Evaluation of a Flux Chamber for Assessing Gaseous Emissions and Treatment Effects of Poultry Manure

Thumbnail Image
Date
2009-06-01
Authors
Acevedo Perez, Ricardo
Li, Hong
Xin, Hongwei
Roberts, Stacey
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Xin, Hongwei
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

The need to quantify air emissions from animal feeding operations (AFOs) with relative ease and reasonable certainty continues to rise. Exploration of practical means to reduce air emissions also calls for less sophisticated but reasonably dependable methods to quantify the treatment effect. Although mobile air emissions monitoring units (MAEMUs) capable of precise and real-time emission measurement is the norm for continuous, intensive monitoring of emissions from mechanically ventilated animal facilities, their relative immobility and high cost are limiting the widespread use. Several other methods, such as gas-washing, micro-meteorological, wind tunnel, flux chamber, and mass-balance methods, have been employed to accommodate different measurement needs. Flux chambers have the advantages of being portable, small size, low cost, and less labor requirement. The objectives of this study were: (1) to develop a portable emission flux chamber system (EFC) for in-situ measurement of ammonia (NH3) and carbon dioxide (CO2) emissions from manure; (2) to assess gaseous (NH3 and CO2) emissions of high-rise layer houses with the EFC vs. MAEMU; and (3) to evaluate the adequacy of using the EFC to determine the effects of dietary regimens on ammonia emissions from the layer manure. The preliminary data showed that NH3 emission from the manure surface measured with the EFC was 8% to 16% that of the whole barn measured with the MAEMU, while CO2 emission from the manure surface was 1% to 4% of the barn emission. The preliminary results obtained with EFC concerning the dietary efficacy of ammonia emission reduction were mixed as compared to those obtained with the MAEMU. More evaluation is continuing.

Comments

This is an ASABE Meeting Presentation, Paper No. 096362.

Description
Keywords
Citation
DOI
Source
Copyright
Thu Jan 01 00:00:00 UTC 2009