An Interactive Spray Drift Simulator

Thumbnail Image
Date
2010-06-01
Authors
Darr, Matthew
Steward, Brian
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hanna, H. Mark
Extension Agricultural Engineer
Person
Darr, Matthew
Professor
Person
Steward, Brian
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

The off target movement of pesticides, known as spray drift, results in a reduction in application rates, damage to non-target organisms, and environmental concerns. Much of this drift can be eliminated if its prevalence is understood and best management practices are implemented. Drift prediction software has been developed to serve as a management tool in determining the effects of applying pesticides under certain operating conditions. To further increase the usefulness and instructiveness of such programs, a program was developed which links spray drift prediction software (DRIFTSIM) with a GPS simulator to obtain a two dimensional representation of drift for simulated ground based spraying event. The program was evaluated using a variety of operating conditions to determine their respective effects on drift deposition levels. Results from the simulations show the importance of choosing the largest sufficient nozzle size, operating under low wind speeds, and spraying at the lowest possible boom height. Analysis of multi-swath simulations showed patterns of increased and reduced application rates due to spray drift.

Description
Keywords
Citation
DOI
Source
Copyright
Fri Jan 01 00:00:00 UTC 2010