Development of Agricultural Field DEM Using Repeated GPS Measurements from Field Operations: Effects of Sampling Intensity and Pattern

Thumbnail Image
Date
2007-06-01
Authors
Aziz, Samsuzana
Steward, Brian
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Steward, Brian
Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Widespread use of GPS systems in agricultural vehicle allows farmers to collect elevation data repeatedly to develop field-level DEM. Accuracy of these DEMs can be improved by understanding how errors are introduced from sampling procedures. In this research, a 120 m by120 m test field was modeled using a 10-m-grid USGS DEM of Winneshiek County, Iowa. Multiple sets of vehicle-based GPS elevation measurements from four filed operations (tillage, planting, spraying and harvesting) with different swath width and speed level were simulated using inverse distance weighting (IDW) interpolation from the test field. GPS errors were modeled using Gauss-Markov process and added to the simulated measurements. Then DEMs were created using a method proposed by Aziz et al. (2005). Results show that RMSE gradually decreased as the number of measurement sets used increased and leveled out after approximately 12 measurement sets unless an increase in input resolution of the elevation data were introduced to improve the RMSE of the resulted DEM. For the widest swath width, as the speed level (distance between data points along a track) decreased, the RMSE decreased from 0.23 m to 0.16 m. Track patterns on the other hand, had significant effects on the topographic maps if very small grid size is used to generate the DEM.

Description
Keywords
Citation
DOI
Source
Copyright
Mon Jan 01 00:00:00 UTC 2007