Terrain analysis and data mining techniques applied to location of classic gully in a watershed

Thumbnail Image
Date
2013-07-01
Authors
Gonçalves Vendrusculo, Laurimar
Kaleita, Amy
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Kaleita, Amy
Department Chair
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Gullies are an extreme form of soil erosion that degrade diverse environments trough the siltation of streams and water bodies. Indirectly, gully erosion compromises crop productivity working as a link to watercourse allowing movement of detached topsoil particles from agricultural fields during heavy storm events. Furthermore, studies found reduction of the catchment area when active gullies are present. This complex process involves multiple factors and it demands to be studied consistently in order to locate the areas prone for gully erosion. The determination of gullies areas depends upon topographical, geological, and hydrological characteristics; however its location is mainly controlled by the high capacity of overland flow to cut the channel. We hypothesize that identification of gully in agricultural landscape can be performed from high-resolution elevation data products and unsupervised clustering approaches. In order to examine this hypothesis we have used variables resultant from of LiDAR-based terrain analysis as input of a three clustering techniques.    A k-means, fuzzy k-means, and CLARA clustering algorithms were used to carry out the cluster analysis. The results of the cluster analysis suggested that 8 classes were optimal for group areas in the watershed. Elevation data from one field-scale watershed near Treynor in Pottawattamie County, IA, was used to calibration purpose and terrain analysis using slope, flow accumulation, plan convexity, topographic wetness Index, and stream power index were calculated. The cluster analysis has shown highest concordance with percentage of corrected classified pixels that approach based in medoid (CLARA) has obtained the best agreement of points within gullied area (30.1%). The results of this research might speed up gullies field surveys and also can serve as input in conservation planning framework.

Comments
Description
Keywords
Citation
DOI
Source
Copyright