Effect of pretreatment of soy insoluble fiber and SSCF with Saccharomyces cerevisiae and Escherichia coli KO11 on ethanol production in an integrated corn-soy biorefinery

Thumbnail Image
Date
2015-07-01
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Maurer, Devin
Research Associate II/Lab Manager
Person
Jung, Stéphanie
Affiliate Associate Professor
Person
Wang, Tong
Affiliate Professor
Person
Rosentrater, Kurt
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Center for Crops Utilization Research
In the 1980s a crisis existed in American farming—a crisis of overproduction, underutilization, and decreasing international market share for raw commodities. Also, the United States’ growing dependence on imported oil and long-term forecasts for increasing oil prices put America at risk. To address this crisis, Center for Crops Utilization Research (CCUR) was established in 1984 through a special appropriation from the Iowa legislature. The center was tasked to respond to the urgent need to improve America’s agricultural competitiveness. Four decades later, there are new opportunities to increase demand for Iowa’s crops. Consumer demand is increasing for new healthful food ingredients, biobased alternatives to petroleum-based products, and sustainable and environmentally friendly industrial processes. The rapid advancement of new food processing technologies and industrial biotechnology enable those demands to be met in an economically viable way. While CCUR’s core mission of increasing demand for Iowa crops remains relevant, the center is also taking these opportunities to grow our connection with companies and entrepreneurs to help them to test, troubleshoot, and optimize their ideas in an industrial-friendly setting.
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionCenter for Crops Utilization ResearchAgricultural and Biosystems Engineering
Abstract

Soy insoluble fiber (IF), co-product of enzyme-assisted aqueous extraction process (EAEP) of soybeans, is rich in carbohydrate and protein. It can be used to enhance ethanol production in an integrated corn-soy biorefinery, which integrates components from soybean processing into corn-based ethanol processing. However, cornstarch and IF have unique carbohydrate compositions that require different treatments for optimal fermentation. The present study investigated the effect of pretreatment method [soaking in aqueous ammonia (SAA), liquid hot water (LHW), and enzymatic hydrolysis], simultaneous saccharification and co-fermentation (SSCF) with Saccharomyces cerevisiae and Escherichia coli KO11, and scaling up from bench scale (150 mL) to pilot scale (60 L) on ethanol production in IF fermentation. Untreated IF was added to integrated corn-soy fermentation and the effect of SSCF was evaluated. It was demonstrated that enzymatic hydrolysis with enzyme cocktail of pectinase, cellulase and xylanase, is the best pretreatment method to maximize ethanol production in IF fermentation with an added advantage of adding enzymes to the fermentation slurry at the SSF step. Ethanol yield almost doubled when SSCF of IF was performed with E. coli KO11 due to conversion of arabinose and xylose into ethanol. Addition of untreated IF to dry-grind corn fermentation increased ethanol production rate, but low ethanol tolerance of E. coli KO11 was a limiting factor in achieving SSCF with S. cerevisiae and E. coli KO11. Michaelis-Menten equation accurately predicted E. coli KO11 growth kinetics by Hanes-Woolf linearization.

Comments

This paper is from 2015 ASABE Annual International Meeting, Paper No. 152190086, pages 1-14 (doi: 10.13031/aim.20152190086). St. Joseph, Mich.: ASABE. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2015