Comparing Biochar-Swine Manure Mixture to Conventional Manure Impact on Soil Nutrient Availability and Plant Uptake—A Greenhouse Study

Thumbnail Image
Supplemental Files
Date
2021-04-03
Authors
Banik, Chumki
Bonds, Darcy
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Koziel, Jacek
Professor Emeritus
Person
Singh, Asheesh
Professor
Person
Licht, Mark
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Organizational Unit
Organizational Unit
Horticulture
The Department of Horticulture was originally concerned with landscaping, garden management and marketing, and fruit production and marketing. Today, it focuses on fruit and vegetable production; landscape design and installation; and golf-course design and management.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionCivil, Construction and Environmental EngineeringAgronomyHorticultureAgricultural and Biosystems EngineeringEnvironmental ScienceToxicologyBioeconomy Institute (BEI)
Abstract

The use of swine manure as a source of plant nutrients is one alternative to synthetic fertilizers. However, conventional manure application with >90% water and a low C:N ratio results in soil C loss to the atmosphere. Our hypothesis was to use biochar as a manure nutrient stabilizer that would slowly release nutrients to plants upon biochar-swine manure mixture application to soil. The objectives were to evaluate the impact of biochar-treated swine manure on soil total C, N, and plant-available macro- and micronutrients in greenhouse-cultivated corn (Zea mays L.) and soybean (Glycine max (L.) Merr.). Neutral pH red oak (RO), highly alkaline autothermal corn stover (HAP), and mild acidic Fe-treated autothermal corn stover (HAPE) biomass were pyrolyzed to prepare biochars. Each biochar was surface-applied to swine manure at a 1:4 (biochar wt/manure wt) ratio to generate mixtures of manure and respective biochars (MRO, MHAP, and MHAPE). Conventional manure (M) control and manure-biochar mixtures were then applied to the soil at a recommended rate. Corn and soybean were grown under these controls and treatments (S, M, MRO, MHAP, and MHAPE) to evaluate the manure-biochar impact on soil quality, plant biomass yield, and nutrient uptake. Soil organic matter significantly (<0.05) increased in all manure-biochar treatments; however, no change in soil pH or total N was observed under any treatment. No difference in soil ammonium between treatments was identified. There was a significant decrease in soil Mehlich3 (M3) P and KCl extractable soil NO3 for all manure-biochar treatments compared to the conventional M. However, the plant biomass nutrient concentrations were not significantly different from control manure. Moreover, an increasing trend of plant total N and decreasing trend of P in the plant under all biochar-manure treatments than the controls were noted. This observation suggests that the presence of biochar is capable of influencing the soil N and P in such a way as not to lose those nutrients at the early growth stages of the plant. In general, no statistical difference in corn or soybean biomass yield and plant nutrient uptake for N, P, and K was observed. Interestingly, manure-biochar application to soil significantly diluted the M3 extractable soil Cu and Zn concentrations. The results attribute that manure-biochar has the potential to be a better soil amendment than conventional manure application to the soil.

Comments

This article is published as Banik, Chumki, Jacek Koziel, Darcy Bonds, Asheesh Singh, and Mark Licht. "Comparing Biochar-Swine Manure Mixture to Conventional Manure Impact on Soil Nutrient Availability and Plant Uptake–A Greenhouse Study." Land 10, no. 4 (2021): 372. DOI: 10.3390/land10040372. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2021
Collections