Odor and Odorous Chemical Emissions from Animal Buildings: Part 2. Odor Emissions

Thumbnail Image
Date
2012-01-01
Authors
Akdeniz, Neslihan
Jacobson, Larry
Hetchler, Brian
Bereznicki, Sarah
Heber, Albert
Koziel, Jacek
Cai, Lingshuang
Zhang, Shicheng
Parker, David
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Koziel, Jacek
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

This study was an add-on project to the National Air Emissions Monitoring Study (NAEMS) and focused on comprehensive measurement of odor emissions considering variations in seasons, animal types, and olfactometry laboratories. Odor emissions from four of 14 NAEMS sites with nine barns/rooms (two dairy barns at the WI5B and IN5B sites, two pig finishing rooms at IN3B, and two sow gestation barns and a farrowing room at the IA4B site) were measured during four 13-week cycles. Odor emissions were reported per barn area (OU h-1 m-2), head (OU h-1 head-1), and animal unit (OU h-1 AU-1). The highest overall odor emission rates were measured in summer (1.2 × 105 OU h-1 m-2, 3.5 × 105 OU h-1 head-1, and 6.2 × 105 OU h-1 AU-1), and the lowest rates were measured in winter (2.5 × 104 OU h-1 m-2, 9.1 × 104 OU h-1 head-1, and 1.5 × 105 OU h-1 AU-1). The highest ambient odor concentrations and barn odor emissions were measured from the sow gestation barns of the IA4B site, which had unusually high H2S concentrations. The most intense odor and the least pleasant odor were also measured at this site. The overall odor emission rates of the pig finishing rooms at IN3B were lower than the emission rates of the IA4B sow gestation barns. The lowest overall barn odor emission rates were measured at the IN5B dairy barns. However, the lowest ambient odor concentrations were measured at the ventilation inlets of the WI5B dairy barns.

Comments

This article is from Transactions of the ASABE 55, no. 6 (2012): 2335–2345.

Description
Keywords
Citation
DOI
Source
Copyright
Sun Jan 01 00:00:00 UTC 2012
Collections