Artificial Neural Network Modeling of Distillers Dried Grains with Solubles (DDGS) Flowability with Varying Process and Storage Parameters

Thumbnail Image
Date
2011-09-01
Authors
Bhadra, Rumela
Muthukumarappan, Kasiviswanathan
Rosentrater, Kurt
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Rosentrater, Kurt
Professor
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Neural network (NN) modeling techniques were used to predict flowability behavior of distillers dried grains with solubles (DDGS) prepared with varying levels of condensed distillers solubles (10, 15, and 20%, wb), drying temperatures (100, 200, and 300°C), cooling temperatures (–12, 25, and 35°C), and storage times (0 and 1 month). Response variables were selected based on our previous research results and included aerated bulk density, Hausner ratio, angle of repose, total flowability index, and Jenike flow index. Various NN models were developed using multiple input variables in order to predict single-response and multiple-response variables simultaneously. The NN models were compared based on R2, mean square error, and coefficient of variation obtained. In order to achieve results with higher R2 and lower error, the number of neurons in each hidden layer, the step size, the momentum learning rate, and the number of hidden layers were varied. Results indicate that for all the response variables, R2 > 0.83 was obtained from NN modeling. Compared with our previous studies, NN modeling provided better results than either partial least squares modeling or regression modeling, indicating greater robustness in the NN models. Surface plots based on the predicted values from the NN models yielded process and storage conditions for favorable versus cohesive flow behavior for DDGS. Modeling of DDGS flowability using NN has not been done before, so this work will be a step toward the application of intelligent modeling procedures to this industrial challenge.

Comments

This article is from Cereal Chemistry 88, no. 5 (September/October 2011): 480–489, doi:10.1094/CCHEM-12-10-0179.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections