Agricultural and Biosystems Engineering Publications

Document Type

Article

Publication Date

7-2008

Journal or Book Title

Journal of Soil and Water Conservation

Volume

63

Issue

4

First Page

232

Last Page

241

DOI

10.2489/jswc.63.4.232

Abstract

Watershed planners need a tool for determining width of filter strips that is accurate enough for developing cost-effective site designs and easy enough to use for making quick determinations on a large number and variety of sites. This study employed the process-based Vegetative Filter Strip Model to evaluate the relationship between filter strip width and trapping efficiency for sediment and water and to produce a design aid for use where specific water quality targets must be met. Model simulations illustrate that relatively narrow filter strips can have high impact in some situations, while in others even a modest impact cannot be achieved at any practical width. A graphical design aid was developed for estimating the width needed to achieve target trapping efficiencies for different pollutants under a broad range of agricultural site conditions. Using the model simulations for sediment and water, a graph was produced containing a family of seven lines that divide the full range of possible relationships between width and trapping efficiency into fairly even increments. Simple rules guide the selection of one line that best describes a given field situation by considering field length and cover management, slope, and soil texture. Relationships for sediment-bound and dissolved pollutants are interpreted from the modeled relationships for sediment and water. Interpolation between lines can refine the results and account for additional variables, if needed. The design aid is easy to use, accounts for several major variables that determine filter strip performance, and is based on a validated, process-based, mathematical model. This design aid strikes a balance between accuracy and utility that fills a wide gap between existing design guides and mathematical models.

Comments

This article is from Journal of Soil and Water Conservation 63, no. 4 (July/August 2008): 232–241, doi:10.2489/jswc.63.4.232.

Access

Open

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Share

COinS