Agricultural and Biosystems Engineering Publications

Document Type

Article

Publication Date

5-1999

Journal or Book Title

Soil and Tillage Research

Volume

50

Issue

3-4

First Page

223

Last Page

236

DOI

10.1016/S0167-1987(99)00002-1

Abstract

Evaluation of computer models with field data is required before they can be effectively used for predicting agricultural management systems. A study was conducted to evaluate tillage effects on the movement of water and nitrate–nitrogen (NO3–N) in the root zone under continuous corn (Zea mays L.) production. Four tillage treatments considered were: chisel plow (CP), moldboard plow (MP), no-tillage (NT), and ridge-tillage (RT). The root zone water quality model (RZWQM: V.3.25) was used to conduct these simulations. Three years (1990–1992) of field observed data on soil water contents and NO3–N concentrations in the soil profile were used to evaluate the performance of the model. The RZWQM usually predicted higher soil water contents compared with the observed soil water contents. The model predicted higher NO3–N concentrations in the soil profile for MP and NT treatments in comparison with CP and RT treatments, but the magnitude of simulated NO3–N peak concentrations in the soil profile were substantially different from those of the observed peaks. The average NO3–N concentrations for the entire soil profile predicted by the model were close to the observed concentrations except for ridge tillage (percent difference for CP=+5.1%, MP=+12.8%, NT=+18.4%, RT=−44.8%). Discrepancies between the simulated and observed water contents and NO3–N concentrations in the soil profile indicated a need for the calibration of plant growth component of the model further for different soil and climatic conditions to improve the N-uptake predictions of the RZWQM.

Comments

This article is from Soil and Tillage Research 50 (1999): 223–236, doi:10.1016/S0167-1987(99)00002-1.

Access

Open

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Share

COinS