RZWQM simulation of long-term crop production, water and nitrogen balances in Northeast Iowa

Thumbnail Image
Date
2007-07-15
Authors
Malone, Robert
Heilman, Philip
Kanwar, Ramesh
Cambardella, Cynthia
Saseendran, S.
Ahuja, Lajpat
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Karlen, Douglas
Affiliate Professor
Person
Kanwar, Rameshwar
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Agricultural system models are tools to represent and understand major processes and their interactions in agricultural systems. We used the Root Zone Water Quality Model (RZWQM) with 26 years of data from a study near Nashua, IA to evaluate year to year crop yield, water, and N balances. The model was calibrated using data from one 0.4 ha plot and evaluated by comparing simulated values with data from 29 of the 36 plots at the same research site (six were excluded). The dataset contains measured tile flow that varied considerably from plot to plot so we calibrated total tile flow amount by adjusting a lateral hydraulic gradient term for subsurface lateral flow below tiles for each plot. Keeping all other soil and plant parameters constant, RZWQM correctly simulated year to year variations in tile flow (r2 = 0.74) and N loading in tile flow (r2 = 0.71). Yearly crop yield variation was simulated with less satisfaction (r2 = 0.52 for corn and r2 = 0.37 for soybean) although the average yields were reasonably simulated. Root mean square errors (RMSE) for simulated soil water storage, water table, and annual tile flow were 3.0, 22.1, and 5.6 cm, respectively. These values were close to the average RMSE for the measured data between replicates (3.0, 22.4, and 5.7 cm, respectively). RMSE values for simulated annual N loading and residual soil N were 16.8 and 47.0 kg N ha−1, respectively, which were much higher than the average RMSE for measurements among replicates (7.8 and 38.8 kg N ha−1, respectively). The high RMSE for N simulation might be caused by high simulation errors in plant N uptake. Simulated corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] yields had high RMSE (1386 and 674 kg ha−1) with coefficient of variations (CV) of 0.19 and 0.25, respectively. Further improvements were needed for better simulating plant N uptake and yield, but overall, results for annual tile flow and annual N loading in tile flow were acceptable.

Comments

This article is from Geoderma 140 (2007): 247–259, doi:10.1016/j.geoderma.2007.04.009.

Description
Keywords
Citation
DOI
Copyright
Collections