Agricultural and Biosystems Engineering Publications

Document Type

Article

Publication Date

5-1994

Journal or Book Title

Soil Science Society of America Journal

Volume

58

Issue

3

First Page

672

Last Page

677

Research Focus Area(s)

Land and Water Resources Engineering

DOI

10.2136/sssaj1994.03615995005800030006x

Abstract

Hydraulic conductivity is the single most important hydraulic parameter for flow and transport-related phenomena in soil, but the results from different measuring methods vary under different field conditions. To evaluate the performance of four in situ saturated hydraulic conductivity (Ks) measuring methods, Ks measurements were made at four depths (15, 30, 60, and 90 cm) and five locations on a glacial-till soil of Nicollet (fine-loamy, mixed, mesic Aquic Hapludoll)-Clarion (fine-loamy, mixed, mesic Typic Hapludoll) association. The four in situ methods were: (i) Guelph permeameter, (ii) velocity permeameter, (iii) disk permeameter, and (iv) double-tube method. The Ks was also determined in the laboratory on undisturbed soil cores collected from all the five sites and four depths. The Guelph permeameter method gave the lowest Ks values, possibly because of small sample size, whereas the disk permeameter and double-tube methods gave maximum values for Ks with minimum variability, possibly because of large sample size. Maximum variability in Ks values for soil cores at shallow depths may have occurred because of the presence or absence of open-ended macropores. Estimates of Ks, however, are most comparable for the velocity permeameter and the laboratory method using a constant-head permeameter.

Comments

This article is from Soil Science Society of America Journal 58 (1994): 672–677, doi:10.2136/sssaj1994.03615995005800030006x.

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Share

COinS