Identifying sampling locations for field-scale soil moisture estimation using K-means clustering

Thumbnail Image
Date
2014-08-01
Authors
Van Arkel, Zachary
Kaleita, Amy
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Kaleita, Amy
Department Chair
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Identifying and understanding the impact of field-scale soil moisture patterns is currently limited by the time and resources required to do sufficient monitoring. This study uses K-means clustering to find critical sampling points to estimate field-scale near-surface soil moisture. Points within the field are clustered based upon topographic and soils data and the points representing the center of those clusters are identified as the critical sampling points. Soil moisture observations at 42 sites across the growing seasons of 4 years were collected several times per week. Using soil moisture observations at the critical sampling points and the number of points within each cluster, a weighted average is found and used as the estimated mean field-scale soil moisture. Field-scale soil moisture estimations from this method are compared to the rank stability approach (RSA) to find optimal sampling locations based upon temporal soil moisture data. The clustering approach on soil and topography data resulted in field-scale average moisture estimates that were as good or better than RSA, but without the need for exhaustive presampling of soil moisture. Using an electromagnetic inductance map as a proxy for soils data significantly improved the estimates over those obtained based on topography alone.

Comments

This article is from Water Resources Research 50 (2014): 7050–7057, doi:10.1002/2013WR015015. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections