Predicting Soil Nitrate-Nitrogen Losses from Incorporated Poultry Manure Using the GLEAMS Model

Thumbnail Image
Date
2001-01-01
Authors
Chinkuyu, Adion
Kanwar, Rameshwar
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Kanwar, Rameshwar
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Proper calibration and validation of computer models can inexpensively and quickly assess the impacts of different agricultural management practices on water quality. This study used Groundwater Loading Effects of Agricultural Management Systems (GLEAMS) version 2.1 to determine the effects of two nitrogen (N) application rates (168 kg N/ha (168PM) and 336 kg –N/ha (336PM)) from poultry manure and one N application rate (168 kg N/ha (168UAN)) from urea ammonium nitrate (UAN) fertilizer on NO3–N loss with subsurface drainage. The simulated NO3–N losses by the GLEAMS model were compared with two–year (1999 and 2000) monthly measured NO3–N losses from six 2.1–m 2 field lysimeters under continuous corn production.

Results indicated that the two–year average simulated subsurface drainage consistently followed the average measured subsurface drainage from 168UAN, 168PM, and 336PM treatments, with mean errors of 9%, 3%, and –2%, respectively. The model was capable of predicting overall NO3–N concentration in subsurface drainage from lysimeters under 168UAN, 168PM, and 336PM treatments reasonably well, giving mean errors of 19%, –29%, and 9%, respectively. The overall two–year results also show that there were no significant differences (p= 0.05) between average measured and simulated NO3–N losses with subsurface drainage from poultry manure treatments. The study concluded that the GLEAMS model can be used as a viable management and decision–making tool to assess the impacts of long–term poultry manure application on water quality and agricultural production for Iowa soils.

Comments

This article was published in Transactions of the ASAE. Vol. 44(6): 1643–1650, doi:10.13031/2013.7051. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2001
Collections