Automatic recognition of lactating sow behaviors through depth image processing

Thumbnail Image
Date
2016-07-01
Authors
Lao, F.
Brown-Brandl, T.
Stinn, J.
Liu, K.
Teng, G.
Xin, H.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Xin, Hongwei
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Manual observation and classification of animal behaviors is laborious, time-consuming, and of limited ability to process large amount of data. A computer vision-based system was developed that automatically recognizes sow behaviors (lying, sitting, standing, kneeling, feeding, drinking, and shifting) in farrowing crate. The system consisted of a low-cost 3D camera that simultaneously acquires digital and depth images and a software program that detects and identifies the sow’s behaviors. This paper describes the computational algorithm for the analysis of depth images and presents its performance in recognizing the sow’s behaviors as compared to manual recognition. The images were acquired at 6 s intervals on three days of a 21-day lactation period. Based on analysis of the 6 s interval images, the algorithm had the following accuracy of behavioral classification: 99.9% in lying, 96.4% in sitting, 99.2% in standing, 78.1% in kneeling, 97.4% in feeding, 92.7% in drinking, and 63.9% in transitioning between behaviors. The lower classification accuracy for the transitioning category presumably stemmed from insufficient frequency of the image acquisition which can be readily improved. Hence the reported system provides an effective way to automatically process and classify the sow’s behavioral images. This tool is conducive to investigating behavioral responses and time budget of lactating sows and their litters to farrowing crate designs and management practices.

Comments

This article is from Computers and Electronics in Agriculture 125 (2016): 56–62, doi:10.1016/j.compag.2016.04.026.

Description
Keywords
Citation
DOI
Copyright
Collections