Status of FAA Studies in Thermal Acoustics

Thumbnail Image
Date
2007-07-01
Authors
Ouyang, Zhong
Brasche, Lisa
Eisenmann, David
Bantel, Tom
Hassan, Waled
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Holland, Stephen
Professor
Person
Eisenmann, David
Associate Teaching Professor
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Aerospace Engineering
Abstract

As with many aerospace applications, commercial jet engine components are operated in demanding environments, often at extreme temperature and stress conditions. The predominant used surface inspection method used on these components is fluorescent penetrant inspection. Research has been ongoing for a number of years on a new technology using a short burst of low frequency ( ∼ 20 KHz) ultrasound to “heat up” cracks and make them visible in the infrared range. The basic premise of the Thermal Acoustic method is to use an energy source with recent efforts using an ultrasonic horn originally intended for use in ultrasonic welding to excite the component. The energy source causes an increase in local heating, which is detectable with infrared cameras typically used in Thermographic inspection. While considerable research is underway, additional information on the sensitivity and applicability of this technique to engine components and alloys is needed prior to widespread use in the aviation industry. The purpose of this program is to provide additional data to determine applicability of this method to engine components.

Comments

Copyright 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

This article appeared in AIP Conference Proceedings, 975 (2008): 1551–1558 and may be found at http://dx.doi.org/10.1063/1.2902620.

Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Tue Jan 01 00:00:00 UTC 2008