FEM modeling of plastic flow and strain-induced phase transformation in BN under high pressure and large shear in a rotational diamond anvil cell

Thumbnail Image
Date
2018-01-01
Authors
Feng, Biao
Levitas, Valery
Li, Wanghui
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Aerospace EngineeringAmes National LaboratoryMechanical EngineeringMaterials Science and Engineering
Abstract

Combined three-dimensional plastic flow and strain-induced phase transformation (PT) in boron nitride (BN) under high pressure and large shear in a rotational diamond anvil cell (rotational DAC or RDAC) are investigated. Geometrically nonlinear frameworks including finite elastic, transformational, and plastic deformations and finite element method (FEM) are utilized. Quantitative information is obtained on the evolutions of the stress tensor, plastic strain, volume fraction of phases in the entire sample, and slip-cohesion transitions, all during torsion under a fixed compressive load in RDAC. The effects of the applied compressive stress and the sample radius on PT and plastic flow are discussed. In comparison with DAC, the same amount of the high-pressure phase can be obtained at a much lower pressure in RDAC, which reduces the required force and the risk of diamond fracture. Also, RDAC has a potential to complete PT during torsion under pressure close to the minimum possible. A quasi-homogeneous pressure can be obtained in a transforming sample in RDAC under a proper choice of properties and parameters of a gasket. A number of experimental phenomena, including the pressure self-multiplication and quasi-homogeneous pressures in DAC and RDAC, are reproduced and interpreted. The simulation results provide a significant insight into coupled PTs and plastic flow in material in RDAC, and are important for the optimum design of experiments and the extraction of material parameters for PT, as well as for the optimization and control of PTs by the variation of various parameters.

Comments

This is a pre-print of the article Feng, Biao, Valery I. Levitas, and Wanghui Li, "FEM modeling of plastic flow and strain-induced phase transformation in BN under high pressure and large shear in a rotational diamond anvil cell." 2018.

Description
Keywords
Citation
DOI
Source
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections