Recurrent Selection to Alter Grain Phytic Acid Concentration and Iron Bioavailability

Thumbnail Image
Date
2015-01-01
Authors
Reddy, Manju
Scott, M. Paul
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Goggi, A. Susana
Professor
Person
Reddy, Manju
Professor Emeritus
Person
Scott, M. Paul
Affiliate Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionAgronomySeed Science Center
Abstract

Iron is an important micronutrient and Fe deficiency is a global health concern. Phytic acid inhibits Fe absorption and cannot be digested by monogastric livestock or humans. High phytate concentration in staple crops may be one of the contributing factors for the high incidence of anemia in developing countries because of its inhibiting effect on Fe absorption. In seeds, it serves as the main storage compound for P. Low phytic acid mutants (lpa) in maize (Zea mays L.) have improved Fe bioavailability, but they have poor germination. Our objective was to develop both low phytic acid (LPA) and high phytic acid (HPA) maize populations using recurrent selection and to compare seed quality and Fe bioavailability among the HPA and LPA populations and lpa mutant lines. Three cycles of selection were performed in two broad-based synthetic populations, BS11 and BS31. The resulting HPA and LPA populations were significantly different in phytic acid concentration in the BS11-derived populations (P < 0.05) but not in the BSS31-derived populations (P > 0.05). The BS11LPA maize population had improved seed germination (13–16%; P < 0.05), and Fe bioavailability was not statistically different (P > 0.05) than the lpa mutant inbred lines. We conclude that recurrent selection for phytic acid levels may be a viable approach for improving Fe bioavailability of grain while maintaining seed quality.

Comments

This article is published as Beavers, Alyssa W., A. Susana Goggi, Manju B. Reddy, Adrienne Moran Lauter, and M. Paul Scott. "Recurrent Selection to Alter Grain Phytic Acid Concentration and Iron Bioavailability." Crop Science 55, no. 5 (2015): 2244-2251. doi: 10.2135/cropsci2014.12.0807.

Description
Keywords
Citation
DOI
Copyright
Collections