Sensible Heat Balance Measurements of Soil Water Evaporation beneath a Maize Canopy

Thumbnail Image
Date
2014-01-01
Authors
Xiao, X.
Heitman, J. L.
Sauer, T. J.
Ren, T.
Horton, Robert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Horton, Robert
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

Soil water evaporation is an important component of the water budget in cropped fields; few methods are available for continuous and independent measurement. A sensible heat balance (SHB) approach has been demonstrated for continuously determining soil water evaporation under bare surface conditions. Applicability of SHB measurements beneath a crop canopy cover has not been evaluated. We tested SHB using heat-pulse sensors to estimate evaporation beneath a full maize (Zea mays L.) canopy. We also implemented a modified SHB approach incorporating below-canopy net radiation, which extended the range of conditions under which SHB is applicable. Evaporation was measured at three positions: row (R), interrow (I), and interrow with roots excluded (IE). Evaporation rates were generally small, averaging −1 across all dates, positions, and measurement methods during the drying period. The SHB evaporation estimates varied among R, I, and IE, with cumulative totals of 4.4, 7.4, and 7.9 mm, respectively, during a 12-d drying period. Lower soil water contents from plant water uptake reduced evaporation rates at R more appreciably with time than at the other positions; I and IE provided similar evaporation patterns. The SHB evaporation estimates at R and I were compared with microlysimeter data on 8 d. Correlation between approaches was modest (r2 = 0.61) but significant (p < 0.001) when compared separately at R and I positions. Correlation was improved (r2 = 0.81) when evaporation estimates were combined across positions, with differences between SHB and microlysimeters typically within the range of values obtained from microlysimeter replicates. Overall, the results suggest good potential for using SHB and modified SHB approaches to determine soil water evaporation in a cropped field. The SHB approach allowed continuous daily estimates of evaporation, separate from evapotranspiration and without destructive sampling.

Comments

This article is published as Xiao, Xinhua, J. L. Heitman, T. J. Sauer, Tusheng Ren, and Robert Horton. "Sensible heat balance measurements of soil water evaporation beneath a maize canopy." Soil Science Society of America Journal 78, no. 2 (2014): 361-368. doi: 10.2136/sssaj2013.08.0371. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Collections