A Systems Modeling Approach to Forecast Corn Economic Optimum Nitrogen Rate

Thumbnail Image
Date
2018-04-13
Authors
Puntel, Laila A.
Thorburn, Peter J.
Moore, Kenneth J.
Archontoulis, Sotirios
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sawyer, John
Contingent Worker Contingent Worker Contingent Worker Contingent Worker Contingent Worker
Person
Barker, Daniel
Researcher
Person
Person
VanLoocke, Andy
Associate Professor
Person
Heaton, Emily
Affiliate Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Iowa Nutrient Research Center
The Iowa Nutrient Research Center was established to pursue science-based approaches to evaluating the performance of current and emerging nutrient management practices and providing recommendations on practice implementation and development. Publications in this digital repository are products of INRC-funded research. The INRC is headquartered at Iowa State University and operates in collaboration with the University of Iowa and the University of Northern Iowa. Additional project information is available at: https://www.cals.iastate.edu/inrc/
Journal Issue
Is Version Of
Versions
Series
Department
AgronomyIowa Nutrient Research Center
Abstract

Historically crop models have been used to evaluate crop yield responses to nitrogen (N) rates after harvest when it is too late for the farmers to make in-season adjustments. We hypothesize that the use of a crop model as an in-season forecast tool will improve current N decision-making. To explore this, we used the Agricultural Production Systems sIMulator (APSIM) calibrated with long-term experimental data for central Iowa, USA (16-years in continuous corn and 15-years in soybean-corn rotation) combined with actual weather data up to a specific crop stage and historical weather data thereafter. The objectives were to: (1) evaluate the accuracy and uncertainty of corn yield and economic optimum N rate (EONR) predictions at four forecast times (planting time, 6th and 12th leaf, and silking phenological stages); (2) determine whether the use of analogous historical weather years based on precipitation and temperature patterns as opposed to using a 35-year dataset could improve the accuracy of the forecast; and (3) quantify the value added by the crop model in predicting annual EONR and yields using the site-mean EONR and the yield at the EONR to benchmark predicted values. Results indicated that the mean corn yield predictions at planting time (R2 = 0.77) using 35-years of historical weather was close to the observed and predicted yield at maturity (R2 = 0.81). Across all forecasting times, the EONR predictions were more accurate in corn-corn than soybean-corn rotation (relative root mean square error, RRMSE, of 25 vs. 45%, respectively). At planting time, the APSIM model predicted the direction of optimum N rates (above, below or at average site-mean EONR) in 62% of the cases examined (n = 31) with an average error range of ±38 kg N ha−1 (22% of the average N rate). Across all forecast times, prediction error of EONR was about three times higher than yield predictions. The use of the 35-year weather record was better than using selected historical weather years to forecast (RRMSE was on average 3% lower). Overall, the proposed approach of using the crop model as a forecasting tool could improve year-to-year predictability of corn yields and optimum N rates. Further improvements in modeling and set-up protocols are needed toward more accurate forecast, especially for extreme weather years with the most significant economic and environmental cost.

Comments

This article is published as Puntel, Laila Alejandra, John E. Sawyer, Daniel Barker, Peter Thorburn, Michael Castellano, Kenneth James Moore, Andrew Vanloocke, Emily Anne Heaton, and Sotirios Archontoulis. "A systems modeling approach to forecast corn economic optimum nitrogen rate." Frontiers in Plant Science 9 (2018): 436. doi: 10.3389/fpls.2018.00436. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections