Assessing causes of yield gaps in agricultural areas with diversity in climate and soils

Thumbnail Image
Date
2017-12-15
Authors
Rattalino Edreira, Juan
Mourtzinis, Spyridon
Conley, Shawn
Roth, Adam
Ciampitti, Ignacio
Licht, Mark
Kandel, Hans
Kyveryga, Peter
Lindsey, Laura
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Licht, Mark
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Plant Pathology and Microbiology
The Department of Plant Pathology and Microbiology and the Department of Entomology officially merged as of September 1, 2022. The new department is known as the Department of Plant Pathology, Entomology, and Microbiology (PPEM). The overall mission of the Department is to benefit society through research, teaching, and extension activities that improve pest management and prevent disease. Collectively, the Department consists of about 100 faculty, staff, and students who are engaged in research, teaching, and extension activities that are central to the mission of the College of Agriculture and Life Sciences. The Department possesses state-of-the-art research and teaching facilities in the Advanced Research and Teaching Building and in Science II. In addition, research and extension activities are performed off-campus at the Field Extension Education Laboratory, the Horticulture Station, the Agriculture Engineering/Agronomy Farm, and several Research and Demonstration Farms located around the state. Furthermore, the Department houses the Plant and Insect Diagnostic Clinic, the Iowa Soybean Research Center, the Insect Zoo, and BugGuide. Several USDA-ARS scientists are also affiliated with the Department.
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Plant Pathology and MicrobiologyAgronomy
Abstract

Identification of causes of gaps between yield potential and producer yields has been restricted to small geographic areas. In the present study, we developed a novel approach for identifying causes of yield gaps over large agricultural areas with diversity in climate and soils. This approach was applied to quantify and explain yield gaps in rainfed and irrigated soybean in the North-Central USA (NC USA) region, which accounts for about one third of soybean global production. Survey data on yield and management were collected from 3568 producer fields over two crop seasons and grouped into 10 technology extrapolation domains (TEDs) according to their soil, climate, and water regime. Yield potential was estimated using a combination of crop modeling and boundary functions for water productivity and compared against highest producer yields derived from the yield distribution in each TED-year. Yield gaps were calculated as the difference between yield potential and average producer yield. Explanatory factors for yield gaps were investigated by identifying management practices that were concordantly associated with high- and low-yield fields. Management × TED interactions were then evaluated to elucidate the underlying causes of yield gaps. The chosen spatial TED framework accounted for about half of the regional variation in producer yield within the NC USA region. Across the 10 TEDs, soybean average yield potential ranged from 3.3 to 5.3 Mg ha−1 for rainfed fields and from 5.3 to 5.6 Mg ha−1for irrigated fields. Highest producer yields in each TED were similar (±12%) to the estimated yield potential. Yield gap, calculated as percentage of yield potential, was larger in rainfed (range: 15–28%) than in irrigated (range: 11–16%) soybean. Upscaled to the NC USA region, yield potential was 4.8 Mg ha−1 (rainfed) and 5.7 Mg ha−1 (irrigated), with a respective yield gap of 22 and 13% of yield potential. Sowing date, tillage, and in-season foliar fungicide and/or insecticide were identified as explanatory causes for yield variation in half or more of the 10 TEDs. However, the degree to which these three factors influenced producer yield varied across TEDs. Analysis of in-season weather helped interpret management × TED interactions. For example, yield increase due to advances in sowing date was greater in TEDs with less water limitation during the pod-setting phase. The present study highlights the strength of combining producer survey data with a spatial framework to measure yield gaps, identify management factors explaining these gaps, and understand the biophysical drivers influencing yield responses to crop management.

Comments

This article is published as Edreira, Juan I. Rattalino, Spyridon Mourtzinis, Shawn P. Conley, Adam C. Roth, Ignacio A. Ciampitti, Mark A. Licht, Hans Kandel et al. "Assessing causes of yield gaps in agricultural areas with diversity in climate and soils." Agricultural and Forest Meteorology 247 (2017): 170-180. doi: 10.1016/j.agrformet.2017.07.010.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections