Document Type

Dataset

Dataset Type

figure_plot

Dataset Product Numbers

Iowa State University of Science and Technology

DEO Contract Number

DE-AC02-07CH11358

Originating Research Organization

Ames Laboratory (AMES), Ames, IA (United States)

Publication/Issue Date

2017

Language

English

Country of Publication

US

Sponsoring Organization(s)

SC-22 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)

Subject Categories

36 MATERIALS SCIENCE, 77 NANOSCIENCE AND NANOTECHNOLOGY

Abstract

Using x-ray photoelectron spectroscopy, the authors characterize the thermally activated changes that occur when Cu is deposited on amorphous carbon supported on Si at 300 K, then heated to 800 K. The authors compare data for Cu on the basal plane of graphite with pinning defects, where scanning tunneling microscopy reveals that coarsening is the main process in this temperature range. Coarsening begins at 500–600 K and causes moderate attenuation of the Cu photoelectron signal. For Cu on amorphous carbon, heating to 800 K causes Cu to diffuse into the bulk of the film, based on the strong attenuation of the Cu signal. Diffusion into the bulk of the amorphous car- bon film is confirmed by changes in the shape of the Cu 2p inelastic tail, and by comparison of attenuation between Cu 2p and Cu 3p lines. The magnitude of the photoelectron signal attenuation is compatible with Cu distributed homogeneously throughout the amorphous carbon film, and is not compatible with Cu at or below the C–Si interface under the conditions of our experiments. Desorption is not significant at temperatures up to 800 K.

Software needed to utilize dataset

WSxM, CasaXPS

Share

COinS