Publication Date

2016

DOI

10.1039/c5ta06039g

Journal Title

Journal of Materials Chemistry A

Volume Number

4

Issue Number

1

First Page

83

Last Page

95

Abstract

Nitrogen and sulfur were simultaneously doped into the framework of mesoporous CMK-3 as metal-free catalysts for direct biorenewable alcohol fuel cells. Glucose, NH3, and thiophene were used as carbon, nitrogen and sulfur precursors, respectively, to prepare mesoporous N-S-CMK-3 with uniform mesopores and extra macropores, resulting in good O2 diffusion both in half cell and alcohol fuel cell investigations. Among all investigated CMK-3 based catalysts, N-S-CMK-3 prepared at 800 °C exhibited the highest ORR activity with the onset potential of 0.92 V vs. RHE, Tafel slope of 68 mV dec−1, and 3.96 electron transfer number per oxygen molecule in 0.1 M KOH. The alkaline membrane-based direct alcohol fuel cell (DAFC) with N-S-CMK-3 cathode displayed 88.2 mW cm−2 peak power density without obvious O2 diffusion issue, reaching 84% initial performance of that with a Pt/C cathode. The high catalyst durability and fuel-crossover tolerance led to stable performance of the N-S-CMK-3 cathode DAFC with 90.6 mW cm−2 peak power density after 2 h operation, while the Pt/C cathode-based DAFC lost 36.9% of its peak power density. The high ORR activity of N-S-CMK-3 can be attributed to the synergistic effect between graphitic-N and S (C–S–C structure), suggesting great potential to use N-S-CMK-3 as an alternative to noble metal catalysts in the fuel cell cathode.

DOE Contract Number(s)

DE-AC02-07CH11358

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS