Anisotropic magnetocaloric response in AlFe2B2

Thumbnail Image
Date
2018-05-15
Authors
Barua, R.
Lejeune, B.
Ke, Liqin
Hadjipanayis, G.
Levin, Eugene
Kramer, Matthew
Lewis, L.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

Experimental investigations of the magnetocaloric response of the intermetallic layered AlFe2B2 compound along the principle axes of the orthorhombic cell were carried out using aligned plate-like crystallites with an anisotropic [101] growth habit. Results were confirmed to be consistent with density functional theory calculations. Field-dependent magnetization data confirm that the a-axis is the easy direction of magnetization within the (ac) plane. The magnetocrystalline anisotropy energy required to rotate the spin quantization vector from the c-to the a-axis direction is determined as K∼0.9 MJ/m3 at 50 K. Magnetic entropy change curves measured near the Curie transition temperature of 285 K reveal a large rotating magnetic entropy change of 1.3 J kg−1K−1 at μ0Happ = 2 T, consistent with large differences in magnetic entropy change ΔSmag measured along the a- and c-axes. Overall, this study provides insight of both fundamental and applied relevance concerning pathways for maximizing the magnetocaloric potential of AlFe2B2 for thermal management applications.

Comments
Description
Keywords
Citation
DOI
Source
Copyright
Collections