Publication Date

5-1-2017

DOI

https://doi.org/10.1103/PhysRevB.95.174402

Journal Title

Physical Review B

Volume Number

95

Issue Number

17

First Page

174402

Abstract

Spin-driven nematicity, or the breaking of the point-group symmetry of the lattice without long-range magnetic order, is clearly quite important in iron-based superconductors. From a symmetry point of view, nematic order can be described as a coherent locking of spin fluctuations in two interpenetrating Néel sublattices with ensuing nearest-neighbor bond order and an absence of static magnetism. Here, we argue that the low-temperature state of the recently discovered superconductor BaTi2Sb2O is a strong candidate for a more exotic form of spin-driven nematic order, in which fluctuations occurring in four Néel sublattices promote both nearest- and next-nearest-neighbor bond order. We develop a low-energy field theory of this state and show that it can have, as a function of temperature, up to two separate bond-order phase transitions, namely, one that breaks rotation symmetry and one that breaks reflection and translation symmetries of the lattice. The resulting state has an orthorhombic lattice distortion, an intra-unit-cell charge density wave, and no long-range magnetic order, all consistent with reported measurements of the low-temperature phase of BaTi2Sb2O. We then use density functional theory calculations to extract exchange parameters to confirm that the model is applicable to BaTi2Sb2O.

DOE Contract Number(s)

AC02-07CH11358

Share

COinS