Adaptive Variational Quantum Dynamics Simulations

Thumbnail Image
Date
2021-07-12
Authors
Yao, Yong-Xin
Gomes, Niladri
Zhang, Feng
Wang, Cai-Zhuang
Ho, Kai-Ming
Iadecola, Thomas
Orth, Peter
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Orth, Peter
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

We propose a general-purpose, self-adaptive approach to construct a variational wave-function ansatz for highly accurate quantum dynamics simulations based on McLachlan’s variational principle. The key idea is to dynamically expand the variational ansatz along the time-evolution path such that the “McLachlan distance”, which is a measure of the simulation accuracy, remains below a set threshold. We apply this adaptive variational quantum dynamics simulation (AVQDS) approach to the integrable Lieb-Schultz-Mattis spin chain and the nonintegrable mixed-field Ising model, where it captures both finite-rate and sudden post-quench dynamics with high fidelity. The AVQDS quantum circuits that prepare the time-evolved state are much shallower than those obtained from first-order Trotterization and contain up to 2 orders of magnitude fewer cnot gate operations. We envision that a wide range of dynamical simulations of quantum many-body systems on near-term quantum-computing devices will be made possible through the AVQDS framework.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections