Effect of carbon addition on the single crystalline magnetostriction of Fe-X (X = Al and Ga) alloys

Thumbnail Image
Date
2010-03-08
Authors
Huang, Mianliang
Du, Yingzhou
McQueeney, Robert
Lograsso, Thomas
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lograsso, Thomas
Ames Laboratory Division Director
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National Laboratory
Abstract

The effect of carbon addition on the magnetostriction of Fe–Ga and Fe–Al alloys was investigated and is summarized in this study. It was found that the addition of carbon generally increased the magnetostriction over binary alloys of Fe–Ga and Fe–Al systems. The formation of carbide in the Fe–Ga–C alloys with a composition near D03 phase region decreased the magnetostriction drastically. Fe–Al–C and Fe–Ga–C alloys responded differently to thermal treatments; the magnetostriction in the quenched Fe–Al–C alloys is equal to or slightly lower than that of the slow cooled as is observed in binary Fe–Al alloy; in contrast, the magnetostriction is generally higher in quenched Fe–Ga–C alloys than slow cooled condition, consistent with the behavior of binary alloys of Fe–Ga. A significant increase in magnetostriction between 25% and 165% depending on the phase region in Fe–Ga–C alloys by quenching was observed in the A2+D03 two-phase region and D03 single phase region.

Comments

The following article appeared in Journal of Applied Physics 107 (2010): 053520 and may be found at http://dx.doi.org/10.1063/1.3311884.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections