Campus Units

Animal Science

Document Type

Article

Publication Version

Published Version

Publication Date

2010

Journal or Book Title

Journal of Animal Science

Volume

88

Issue

3

First Page

1009

Last Page

1016

DOI

10.2527/jas.2008-1730

Abstract

Although concerns over the environmental impact of excess P in the excreta from pig production and governmental regulations have driven research toward reducing dietary supplementation of P to swine diets for over a decade, recent dramatic increases in feed costs have further motivated researchers to identify means to further reduce dietary P supplementation. We have demonstrated that genetic background impacts P utilization in young pigs and have identified genetic polymorphisms in several target genes related to mineral utilization. In this study, we examined the impact of a SNP in the calcitonin receptor gene (CALCR) on P utilization in growing pigs. In Exp. 1, 36 gilts representing the 3 genotypes identified by this CALCR SNP (11, 12, and 22) were fed a P-adequate (PA) or a marginally P-deficient (approximately 20% less available P; PD) diet for 14 wk. As expected, P deficiency reduced plasma P concentration, bone strength, and mineral content (P < 0.05). However, the dietary P deficiency was mild enough to not affect the growth performance of these pigs. A genotype × dietary P interaction (P < 0.05) was observed in measures of bone integrity and mineral content, with the greatest reduction in bone strength and mineral content due to dietary P deficiency being associated with the allele 1. In Exp. 2, 168 pigs from a control line and low residual feed intake (RFI) line were genotyped for the CALCR SNP and fed a PA diet. As expected, pigs from the low RFI line consumed less feed but also gained less BW when compared with the control line (P < 0.05). Although ADFI did not differ between genotypes, pigs having the 11 genotype gained less BW (P < 0.05) than pigs having the 12 or 22 genotypes. Pigs of the 11 and 12 genotypes had bones that tolerated greater load when compared with animals having the 22 genotype (P < 0.05). A similar trend was observed in bone modulus and ash % (P < 0.10). These data are supportive of the association of this CALCR SNP with bone integrity and its response to dietary P restriction. Although the allele 1 is associated with greater bone integrity and mineral content during adequate P nutrition, it is also associated with the greatest loss in bone integrity and mineral content in response to dietary P restriction. Understanding the underlying genetic mechanisms that regulate P utilization may lead to novel strategies to produce more environmentally friendly pigs.

Comments

This is an article from Journal of Animal Science 88 (2010): 1009, doi:10.2527/jas.2008-1730. Posted with permission.

Copyright Owner

American Society of Animal Science

Language

en

File Format

application/pdf

Share

COinS