New alleles in calpastatin gene are associated with meat quality traits in pigs

Thumbnail Image
Date
2004-10-01
Authors
Bastiaansen, John
Lonergan, Steven
Dekkers, Jack
Plastow, Graham
Rothschild, Max
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lonergan, Steven
Morrill Professor
Person
Rothschild, Max
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Animal Science

The Department of Animal Science originally concerned itself with teaching the selection, breeding, feeding and care of livestock. Today it continues this study of the symbiotic relationship between animals and humans, with practical focuses on agribusiness, science, and animal management.

History
The Department of Animal Husbandry was established in 1898. The name of the department was changed to the Department of Animal Science in 1962. The Department of Poultry Science was merged into the department in 1971.

Historical Names

Journal Issue
Is Version Of
Versions
Series
Department
Animal Science
Abstract

Suggestive QTL affecting raw firmness scores and average Instron force, tenderness, juiciness, and chewiness on cooked meat were mapped to pig chromosome 2 using a three-generation intercross between Berkshire and Yorkshire pigs. Based on its function and location, the calpastatin (CAST) gene was considered to be a good candidate for the observed effects. Several missense and silent mutations were identified in CASTand haplotypes covering most of the coding region were constructed and used for association analyses with meat quality traits. Results demonstrated that one CAST haplotype was significantly associated with lower Instron force and cooking loss and higher juiciness and, therefore, this haplotype is associated with higher eating quality. Some of the sequence variation identified may be associated with differences in phosphorylation of CAST by adenosine cyclic 3′, 5′-monophosphate-dependent protein kinase and may in turn explain the meat quality phenotypic differences. The beneficial haplotype was present in all the commercial breeds tested and may provide significant improvements for the pig industry and consumers because it can be used in marker-assisted selection to produce naturally tender and juicy pork without additional processing steps.

Comments

This article is from Journal of Animal Science 82 (2004): 2829–2839. Posted with permission.

Description
Keywords
Citation
DOI
Source
Copyright
Thu Jan 01 00:00:00 UTC 2004
Collections