Resource Recovery from Wastewater Treatment Sludge Containing Gypsum

Thumbnail Image
Date
1984
Authors
Smith, L.L.
Fortney, M.L.
Morris, C.E.
Wheelock, Thomas
Carrazza, J.A.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

The disposal of wastewater treatment sludge generated at the Radford Army Ammunition Plant (RAAP) is a serious problem. The sludge is produced by neutralizing spent acid contained in the wastewater with lime, and consists principally of very finely divided wet gypsum (calcium sulfate dihydrate). Although the sludge is presently being disposed of in a landfill, the sludge is difficult to handle and convert into a load-bearing material. Therefore an alternative method of disposal is being developed and evaluated.

The alternative method involves drying and granulating the sludge, followed by high temperature calcination in a fluidized bed reactor to recover usable sulfur dioxide and lime. If the method is adopted, these products would be used within the plant with considerable cost savings. The sulfur dioxide would be added to the feed stream of an oleum manufacturing facility and the lime would be reused in wastewater treatment.

Comments

This is a conference proceeding from Proceedings of the 1984 National Waste Processing Conference (1984): 441. Posted with permission.

Description
Keywords
Citation
DOI
Source
Copyright