High Rate Detection of Volatile Products Using Differential Electrochemical Mass Spectrometry: Combining an Electrode-Coated Membrane with Hydrodynamic Flow in a Wall-Tube Configuration

Thumbnail Image
Supplemental Files
Date
2013-01-01
Authors
Angelici, Robert
Woo, L. Keith
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hillier, Andrew
Professor
Person
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

We present an experimental system that combines differential electrochemical mass spectrometry with hydrodynamic flow consisting of an impinging jet in a wall-tube configuration. This assembly allows simultaneous detection of electrochemical signals along with monitoring of dissolved gas species using differential electrochemical mass spectrometry under well-defined hydrodynamic conditions and over a wide range of mass transfer rates. The working electrode is deposited directly onto a thin, hydrophobic membrane, which also serves as the inlet to the mass spectrometer. This inlet provides extremely rapid mass detection as well as a high flux of products from the electrode surface into the mass spectrometer. The impinging jet is designed in a wall-tube configuration, in which the jet diameter is large compared to the electrode diameter, thus providing uniform and rapid mass transfer conditions over the entirety of the electrode surface. This combination of rapid detection and controllable flow conditions allows a wide range of hydrodynamic conditions to be accessed with simultaneous electrochemical and mass spectrometric detection of dissolved gas species, which is important in the analysis of a range of electrochemical reactions. The capabilities of this configuration are illustrated using a platinum-coated electrode and several electrochemical reactions, including ferrocyanide oxidation, proton reduction, and oxalic acid oxidation.

Comments

This article is from Analytical Chemistry85 (2013): 6059-6065, doi:10.1021/ac400928p. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections