Amphiphilic polyanhydride films promote neural stem cell adhesion and differentiation

Thumbnail Image
Date
2011-01-01
Authors
Sakaguchi, Donald
Mallapragada, Surya
Narasimhan, Balaji
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Narasimhan, Balaji
Distinguished Professor
Person
Sakaguchi, Donald
Director of Biology and Genetics Undergraduate Program and Morrill Professor
Person
Mallapragada, Surya
Associate Vice President
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological EngineeringBiochemistry, Biophysics and Molecular Biology
Abstract

Several challenges currently exist for rational design of functional tissue engineering constructs within the host, which include appropriate cellular integration, avoidance of bacterial infections, and low inflammatory stimulation. This work describes a novel class of biodegradable, amphiphilic polyanhydrides with many desirable protein-material and cell-material attributes capable of confronting these challenges. The biocompatible amphiphilic polymer films were shown to release laminin in a stable and controlled manner, promote neural cell adhesion and differentiation, and evade inflammatory responses of the immune system. Using high-throughput approaches, it was shown that polymer chemistry plays an integral role in controlling cell-film interactions, which suggests that these polyanhydrides can be tailored to achieve the desired cell adhesion and differentiation while minimizing immune recognition. These findings have important implications for development of engineered constructs to regulate differentiation and target the growth of transplanted cells in stem cell-based therapies to treat nervous system disorders.

Comments

This is a copy of an article published in Tissue Engineering - Part A, © 2011 Mary Ann Liebert, Inc,; Tissue Engineering - Part A is available online at : http://online.liebertpub.com.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2011
Collections