Modeling of deoxy- and dideoxyaldohexopyranosyl ring puckering with MM3(92)

Thumbnail Image
Date
2001-10-01
Authors
Rockey, William
Dowd, Michael
Reilly, Peter
French, Alfred
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

Extensive variations of the ring structures of three deoxyaldohexopyranoses, l-fucose, d-quinovose, and l-rhamnose, and four dideoxyaldohexopyranoses, d-digitoxose, abequose, paratose, and tyvelose, were studied by energy minimization with the molecular mechanics algorithm MM3(92). Chair conformers, 4C1 ind-quinovose and the equivalent 1C4 in l-fucose and l-rhamnose, overwhelmingly dominate in the three deoxyhexoses; in the d-dideoxyhexoses, 4C1 is again dominant, but with increased amounts of 1C4 forms in the α anomers of the three 3,6-dideoxyhexoses, abequose, paratose, and tyvelose and in both α and β anomers of the 2,6-dideoxyhexose d-digitoxose. In general, modeled proton–proton coupling constants agreed well with experimental values. Computed anomeric ratios strongly favor the β configuration except ford-digitoxose, which is almost equally divided between α and β configurations, and l-rhamnose, where the β configuration is somewhat favored. MM3(92) appears to overstate the prevalence of the equatorial β anomer in all three deoxyhexoses, as earlier found with fully oxygenated aldohexopyranoses.

Comments

This is a post-print of an article from Carbohydrate Research, 335, no. 4 (October 2001): 261–273, doi: 10.1016/S0008-6215(01)00240-3.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2001
Collections