Myosin phosphorylation on stress fibers predicts contact guidance behavior across diverse breast cancer cells

Thumbnail Image
Date
2017-03-01
Authors
Wang, Juan
Schneider, Ian
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Schneider, Ian
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Genetics, Development and Cell Biology

The Department of Genetics, Development, and Cell Biology seeks to teach subcellular and cellular processes, genome dynamics, cell structure and function, and molecular mechanisms of development, in so doing offering a Major in Biology and a Major in Genetics.

History
The Department of Genetics, Development, and Cell Biology was founded in 2005.

Related Units

Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Genetics, Development and Cell BiologyChemical and Biological Engineering
Abstract

During cancer progression the extracellular matrix is remodeled, forming aligned collagen fibers that proceed radially from the tumor, resulting in invasion. We have recently shown that different invasive breast cancer cells respond to epitaxially grown, aligned collagen fibrils differently. This article develops insight into why these cells differ in their contact guidance fidelity. Small changes in contractility or adhesion dramatically alter directional persistence on aligned collagen fibrils, while migration speed remains constant. The directionality of highly contractile and adhesive MDA-MB-231 cells can be diminished by inhibiting Rho kinase or β1 integrin binding. Inversely, the directionality of less contractile and adhesive MTLn3 cells can be enhanced by activating contractility or integrins. Subtle, but quantifiable alterations in myosin II regulatory light chain phosphorylation on stress fibers explain the tuning of contact guidance fidelity, separate from migration per se indicating that the contractile and adhesive state of the cell in combination with collagen organization in the tumor microenvironment determine the efficiency of migration. Understanding how distinct cells respond to contact guidance cues will not only illuminate mechanisms for cancer invasion, but will also allow for the design of environments to separate specific subpopulations of cells from patient-derived tissues by leveraging differences in responses to directional migration cues.

Comments

This is a manuscript of an article published as Wang, Juan, and Ian C. Schneider. "Myosin phosphorylation on stress fibers predicts contact guidance behavior across diverse breast cancer cells." Biomaterials 120 (2017): 81-93. DOI: 10.1016/j.biomaterials.2016.11.035. Copyright 2016. Elsevier Ltd. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections