Detection of Corrosion‐Related Defects in Aluminum Using Positron Annihilation Spectroscopy

Thumbnail Image
Date
1994
Authors
Wu, X.
Asoka-Kumar, P.
Lynn, Kelvin
Hebert, Kurt
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hebert, Kurt R
Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

Near‐surface atomic‐scale defects in aluminum foils of at least 99.98% purity were characterized with positron annihilation spectroscopy measurements of the Doppler‐broadening parameter S. Profiles of S vs. positron beam energy (i.e., vs. depth into the sample) were analyzed with a model for positron diffusion and trapping in order to characterize the defect layer structure. As‐received foils were shown to possess a defect layer within 10 to 100 nm of the oxide film/metal interface. Both dissolution in aqueous sodium hydroxide solution and anodic pitting corrosion in caused significant changes in the position spectra which were interpreted as increases in the defect population. On the basis of isochronal annealing, the defects were impurity‐complexed voids or vacancy clusters, or else interfacial voids at the metal/film boundary located at surface roughness features. Either case suggests a possible role for the defects as pit sites, since both near‐surface impurities and surface roughness are known to influence the number of pits on a surface. Defects found after pitting may be present in layers surrounding individual pits, and might have been produced in the process of pit initiation.

Comments

This article is from Journal of the Electrochemical Society 141 (1994): 3361–3368, doi:10.1149/1.2059340. Posted with permission.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sat Jan 01 00:00:00 UTC 1994
Collections