Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

11-24-2014

Journal or Book Title

Structural Health Monitoring

Volume

14

Issue

2

First Page

137

Last Page

147

DOI

10.1177/1475921714560071

Abstract

This work focuses on the analysis of a new nanocomposite cement-based sensor (carbon nanotube cement-based sensor), for applications in vibration-based structural health monitoring of civil engineering structures. The sensor is constituted of a cement paste doped with multi-walled carbon nanotubes, so that mechanical deformations produce a measurable change of the electrical resistance. Prior work of some of the authors has addressed the fabrication process, dynamic behaviour and implementation to full-scale structural components. Here, we investigate the effectiveness of a linear lumped-circuit electromechanical model, in which dynamic sensing is associated with a strain-dependent modulation of the internal resistance. Salient circuit parameters are identified from a series of experiments where the distance between the electrodes is parametrically varied. Experimental results indicate that the lumped-circuit model is capable of accurately predicting the step response to a voltage input and its steady-state response to a harmonic uniaxial deformation. Importantly, the model is successful in anticipating the presence of a superharmonic component in sensor’s output.

Research Focus Area

Construction Engineering and Management, Environmental/Water Resources Engineering, Geotechnical/Materials Engineering, Structural Engineering

Comments

This is a manuscript of an article from Structural Health Monitoring, 14(2), 2015: 137-147 doi: 10.1177/1475921714560071. Posted with permission.

Copyright Owner

The Authors

Language

en

File Format

application/pdf