Interfacial treatment effects on behavior of soft nano-composites for highly stretchable dielectrics

Thumbnail Image
Date
2014-06-18
Authors
Saleem, Hussam
Thunga, M.
Kollosche, M.
Kessler, M.
Laflamme, Simon
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Civil, Construction and Environmental Engineering
Abstract

We investigate the influence of interfacial treatment on the matrix–filler interaction using a melt mixing process to fabricate robust and highly stretchable dielectrics. Silicone oil and silane coupling agent are studied as possible solutions to enhance the compatibility between the inorganic fillers and polymer matrix. Morphology, thermomechanical and dielectric behavior of the prepared specimens are studied. Results show that specimens filled with silicone oil coated particles have promising dielectric and thermal properties. The mechanical properties reveal a stiffness enhancement by 67% with a high strain at break of 900%. The relative permittivity of the specimens prepared with silicone oil increased by 45% as observed from the dielectric analysis.

Comments

NOTICE: this is the author's versin of a work that was accepted for publication in Polymer. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. a definitive version was subsequently published in Polymer, 55(17);2014; 4531-4537. Doi: 10.1016/j.polymer.2014.06.054

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections