Campus Units

Civil, Construction and Environmental Engineering

Document Type

Article

Publication Version

Published Version

Publication Date

2014

Journal or Book Title

Journal of Physical Oceanography

Volume

44

First Page

2661

Last Page

2680

DOI

10.1175/JPO-D-14-0027.1

Abstract

Laboratory experiments were performed to measure differential diffusion of temperature and salinity across a sheared density interface. The eddy diffusivity of temperature KT exceeded the eddy diffusivity of salinity KS by as much as 1.5 orders of magnitude at low ε/νN2, where ε is the rate of dissipation of turbulent kinetic energy, ν is the kinematic viscosity, and N is the buoyancy frequency in the pycnocline. The diffusivity ratio d = KS/KT increased from about 0.05 to 1 over the range 0.1 < ε/νN2 < 40. These differences made the eddy diffusivity of density depend on the density ratio. The trend of d with ε/νN2 was consistent with trends found in other experiments, simulations, and theory, and the collapse of several datasets allowed the diffusivity ratio to be expressed as a function of ε/νN2. However, shear decreased differential diffusion less in the experiments than predicted by theory for homogeneous turbulence subjected to constant shear and stratification. No strong effect of the density ratio on the diffusivity ratio was apparent. Because many flows in oceanography and limnology have values of ε/νN2 low enough to exhibit significant differential diffusion, accounting for differential diffusion in interpreting measurements and modeling stratified water bodies is recommended.

Comments

This is an article from Journal of Physical Oceanography 41 (2014): 2661, doi:10.1175/JPO-D-14-0027.1.

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Share

COinS