9-17-1963

Apparatus for threshing grain

Wesley F. Buchele
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/patents

Part of the Bioresource and Agricultural Engineering Commons

Recommended Citation
http://lib.dr.iastate.edu/patents/15

This Report is brought to you for free and open access by the Iowa State University Research Foundation, Inc. at Digital Repository @ Iowa State University. It has been accepted for inclusion in Iowa State University Patents by an authorized administrator of Digital Repository @ Iowa State University. For more information, please contact hinefuku@iastate.edu.
APPARATUS FOR THRESHING GRAIN

Wesley F. Buchele, Iowa State College, Ames, Iowa

This invention relates generally to grain threshing apparatus and in particular to an apparatus for threshing grain wherein an impeller is rotatable within a concave or tubular screen.

This application is a division of application Serial No. 560,552, now Patent No. 2,906,270.

An object of this invention is to provide an improved apparatus for threshing grain.

A further object of this invention is to provide a grain threshing apparatus wherein rotatable flexible threshing or impeller members are progressively flexed during rotation within and against the inner peripheral surface of a screen to concurrently effect a threshing of the grain and a separation of the grain from the straw.

Another object of this invention is to provide threshing apparatus wherein material to be threshed is continuously drawn into one end of a cone shape screen for travel along a generally spiral path toward the opposite end of the screen, with the material being continuously threshed during such travel.

Still another object of this invention is to provide a threshing apparatus wherein the grain is threshed by a rubbing or rolling action so as to substantially eliminate any cracking or breaking of the grain being threshed.

A further object of this invention is to provide a threshing apparatus which is of a compact and simple construction and capable of handling various materials with a high degree of threshing efficiency.

Still another object of this invention is to provide a threshing apparatus of impeller type wherein the material to be threshed is drawn into the apparatus, threshed and separated by the action of the impeller.

Further objects, features and advantages of this invention will become apparent from the following description taken in connection with the accompanying drawings in which:

FIG. 1 is a horizontal longitudinal sectional view of the threshing apparatus of this invention;

FIG. 2 is a perspective view of the screen for the threshing apparatus shown in FIG. 1;

FIGS. 3, 4 and 5 are sectional views as seen along the lines 3—3, 4—4, and 5—5 respectively, in FIG. 1;

FIG. 6 is a sectional view of a modified form of the threshing apparatus of this invention, illustrated substantially similarly to FIG. 1, wherein the screen is rotatable relative to the impeller; and

FIG. 7 is a sectional view taken along the line 7—7 in FIG. 6.

With reference to the drawings, the threshing apparatus of this invention is illustrated in FIG. 1 as including a perforated screen 15 of a generally hollow cone shape supported in a fixed position within a housing unit 16. As best appears in FIGS. 2 and 3, the small or inlet end portion 17 of the screen 15 is of a generally involute shape in transverse cross section, and the larger portion 19 of the screen 15 is circular in transverse cross section (FIG. 5). The inlet portion 17 of the screen 15 is contoured or shaped at its junction 18 with the adjacent end 21 of the larger section 19 to provide a single continuous screen 15.

As illustrated in FIGS. 2 and 3 the screen 15 is formed with an inlet opening 22, for the material to be threshed, so that such material is introduced into the screen 15 in a direction normal to the surface of the screen 15.

Rotatable within the screen 15 is an impeller unit 23 (FIGS. 1 and 3) which includes a shaft 24 rotatably supported in bearings 26 carried on the housing 16. Secured to and extended radially from the shaft 24, and arranged within the cone section 17 are supporting arms 27 illustrated as being four in number and spaced apart a distance of about ninety degrees. Corresponding, but longer supporting arms 28 are secured to the shaft 24 at the large end of the screen 15 (FIG. 1). Cross bars 29 connected between the free ends of corresponding arms 27 and 28 travel in a plane substantially parallel with the surface of the screen 15. Each cross arm 29 supports a pair of impeller members 31 and 32, with the impeller members 31 being located within the screen section 17, and the impeller members 32 within the screen section 19.

As best appears in FIG. 3, the impeller members 31 are secured to a corresponding cross bar 29 by means of a combination clamping and straw breaking member 33 which is of a substantially angle shape in transverse cross section. The impeller members 31 and 32 are positioned between a cross bar 29 and a straw breaker 33 and secured thereto by clamping bolts 34. It will be noted that the laterally extended legs 36 of the straw breakers extend forwardly from a corresponding cross bar 29 relative to the direction of rotation of the impeller unit 23, with this rotation being in a clockwise direction as viewed in FIG. 3. Also, a straw breaker or clamping member 33 within the intake section 17 of the screen 15 is tapered inwardly in a direction toward the large end portion 19 of the screen 15, for a purpose to appear later.

In the operation of the threshing apparatus shown in FIG. 1, the material to be threshed is introduced into a chute, conveyor or the like, (not shown) arranged opposite the screen inlet opening 22 and extended in a direction normal to the surface of the screen 15. This material is drawn into the screen section 17 by a suction pressure treated at the inlet opening 22.

This suction pressure at the inlet opening 22 is achieved by the shape of the screen portion 17 and the action thereon of the impellers 31. The periphery of the screen portion 17, in a clockwise direction from the inlet 22, as viewed in FIG. 5, is generated about the impeller shaft 24 with progressively increasing radii over a peripheral distance indicated at A, and with progressively decreasing radii over the peripheral distance indicated at B and which terminates at the opening 22. Over the distance A the radii of the screen portion 17 are slightly greater than the radial length of an impeller member 31, with the radii over the distance B being progressively shorter than the radial length of an impeller member 31.

On rotation of an impeller member 31 in a clockwise direction as viewed in FIG. 3, a member 31 has its greatest contact with the screen portion 17 at a section 41 thereof immediately prior to travel across the opening 22. As a result, when a member 31 is released from the section 41, it creates a suction or low pressure area 42 in the screen portion 17 opposite the opening 22.

In other words, the low pressure area 42 is caused by a flexible rubber impeller member 31 being released from the screen section 41, which functions like a cam, and then being permitted to move toward a radially extended position under the action of centrifugal force. As a result the volume of air confined in the area 42 between the impeller members, designated as 31a and 31c in FIG. 3, and positioned forwardly in the direction of rotation from the screen section 41 is much greater than the volume of air confined in the space or area 43 between the impeller member 31a and the impeller member 31b positioned rearwardly of the screen section 41.
through directly on the grain, the centrifugal force of an impeller tending to deflect or throw the straw toward the large spiral path movement into the screen portion 19 where the balls in a ball bearing. As a result of this slippage there is an increased rubbing and threshing action due to the reduced velocity or rate of travel of the material which remains radially extended under the action of the impeller members 31. This rubbing action is very similar to that which occurs in an overlapping relation with the outer or larger end 72 of the screen section 17. In the apparatus shown in FIGS. 6 and 7, the screen section 19a is rotated relative to the screen section 17a which is stationary.

As shown in FIG. 7 the smaller end 71 of the screen section 19a is provided with an annular V-belt track 73 for receiving a V-belt 74 which travels from the track 73 about a pulley 76 mounted on a drive shaft 24 which drives both the screen section 19a and the shaft 24. The belt 74 is also trained around an idler pulley 78, with the pulleys 76 and 78 being arranged to operate sides of and above the screen section 19a. The belt 74 thus supports the inner end 71 of the screen section 19a for rotation.

The outer or large end of the screen section 19a terminates in an axially extended annular flange 81 which is arranged in riding engagement with a series of rollers 82 mounted on the housing 16. A blower 57 is carried within a stationary cylindrical member 53 arranged in an overlapping relation with the screen bearing section 81. In the operation of the threshing apparatus shown in FIGS. 6 and 7, the screen section 19a is rotated at a somewhat slower speed than the impeller unit 23. By virtue of this relative rotation between the screen section 19a and the impeller unit 23, the impeller unit can be operated at a higher speed relative to its operation in the apparatus shown in FIG. 1, with reduced wear of the impeller members 32 and with the reduced rubbing and rolling action upon the material to be threshed.

the thrashed grain or seed is moved outwardly from the screen 15 through the perforations 48 in the manner previously described. The screen 15, at its large end, terminates in a straight imperforate cylindrical section 54, which in turn has an inwardly extended terminal flange or collar 56. Mounted upon the shaft 24, and within the cylindrical section 54 is a blower or fan 57 which serves a dual function.

By virtue of the fan action of the impeller members 32 there is a tendency to effect a suction action on the thrashed grain preventing a free flow of such grain through the perforations 48 in the screen 15. The blower 57 forces air inwardly from the screen 15 in amounts sufficient to overcome this fan action of the impeller members 32. The thrashed grain is thus free to travel through the screen 15, into a discharge outlet 59 (FIG. 5) extended tangentially from the cylindrical section 54, with this discharge taking place as a result of a direct impact of the straw with the blower 57 and the blowing action of the blower 57.

The threshing apparatus shown in FIGS. 6 and 7 is substantially similar to that shown in FIGS. 1-5, inclusive. Accordingly, like structure in the apparatus shown in FIGS. 6 and 7 is designated by like numerals.
material to be threshed follows a generally spiral path to provide for a continuous threshing operation of greater duration relative to a straight threshing cylinder or screen of the same length as the cone shape screen 15.

Although the invention has been described with respect to a preferred embodiment thereof, it is to be understood that it is not to be so limited, since changes can be made therein which are within the scope of the appended claims.

1. Threshing apparatus comprising a first tubular screen member of an involute shape in transverse cross-section with an inlet opening formed therein at the minor radius, a second tubular screen member axial of said first screen member and of a frusto conical shape with a discharge opening at the end opposite said inlet opening, a shaft extended axially of said first and second screen members, first impeller members mounted on said shaft within said first screen member and being of a radial length substantially equal to the major radius of said first screen member whereby each of said first impeller members engages said first screen member with a progressively increasing length as said each first impeller member rotates toward said opening, and second impeller members mounted on said shaft for engagement with said second screen member, and a plurality of straw breaking members mounted on said shaft within said first screen member, each straw breaking member including a curved portion extended in the direction of rotation of said shaft and tapering inwardly longitudinally of said shaft toward said second screen member, said second impeller members having a triangular shape so as to have their longest radial length adjacent said discharge opening for a maximum rubbing action upon the material to be threshed.

2. Threshing apparatus comprising a first tubular screen member of an involute shape in transverse cross-section with an inlet opening formed therein at the minor radius, a second tubular screen member axial of said first screen member and of a frusto conical shape with a discharge opening at the end opposite said inlet opening, a shaft extended axially of said first and second screen members, first impeller members mounted on said shaft within said first screen member and being of a radial length substantially equal to the major radius of said first screen member whereby each of said first impeller members engages said first screen member with a progressively increasing length as said each first impeller member rotates toward said opening, second impeller members mounted on said shaft for engagement with said second screen member, and fan means mounted on said shaft adjacent the large end of said second screen members for removing material from said second screen member and forcing air into said second member.

References Cited in the file of this patent

UNITED STATES PATENTS

154,924 Stevens Sept. 8, 1874
483,899 Cantwell Oct. 4, 1892
905,259 Widmer Dec. 1, 1908
1,184,999 Reason May 30, 1916
2,108,655 Dempsey Feb. 15, 1938
2,910,070 Greedy et al. Oct. 27, 1959