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1 Introduction

1.1 Motivation: Casting Example

This work has been motivated by some issues of process monitoring in casting applications. In die

casting, as time passes, material is deposited on the inside wall of the die. This foreign material

can cause an unacceptable level of porosity in the output of the casting process. After accumulated

material reaches a certain level, some of the output of the casting process no longer meets the

speci�cations and the process must be stopped to clean the die. Sudden changes in output quality

are also common in casting processes. The degree of porosity of the output of the casting process

changes suddenly if, for example, one opens the door of the production facility thereby changing

the laboratory temperature, causing an immediate larger accumulation of foreign material. Also

day-to-day variation in weather, changes in humidity, and other factors can be responsible for this

kind of change.

1.2 On-line vs. O�-line Change Detection Algorithm

Let y1; y2; ::: be a sequence of observed process output values (such as the degree of porosity) with

conditional density f(yk jyk�1; : : : ; y1; �). Let the unknown time of change be t0. In on-line change-

detection algorithms, the objective is to detect a change as soon as possible, if not immediately after

it occurs. Detection of the change-time is performed by considering all past data and stopping at

the �rst point in time at which there is su�cient evidence that a change of importance has occurred.
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Mathematically, such a stopping-time rule can be expressed as:

ta = min
n
f	n(y1; : : : ; yn) � �g

where 	1;	2; ::: is a family of functions of n co-ordinates indexed by time and � is a threshold

speci�ed to control the probability of detection errors. For example, 	n may be the probability

of exceeding the critical level at the n th inspection. Another alternative would be to de�ne 	n

as max
1�j�n

log�n
j ; where �n

j is the likelihood ratio for the observations from time j to time n (The

likelihood ratio is generally de�ned as the ratio of the probability of the data maximized over all

process states to the probability when the process is operating correctly.)

O�-line algorithms, on the other hand, can be looked upon as postmortem analyses. They are

designed to collect data and test if there had been any change in the level of the process sometime

during the past. If it is suggested that there was a change, these algorithms try to estimate the

unknown change time. In this paper we will focus mainly on the on-line algorithms.

1.3 Overview

Section 2 provides a brief survey of literature and describes the basic problem of detecting a change of

known magnitude. This basic problem is important for understanding the subsequent developments

in the following sections. In section 3 we will generalize to more realistic situations of multiple

changes of unknown magnitude, and trend in the process mean. Section 4 will be devoted to the

discussion of rejection sampling and its use in Bayesian updating of the distributions used in making

decisions. In section 5 we will use a simulated example to illustrate the behavior of the methodologies

developed in sections 2 and 3. In section 6 we will formulate a decision theory-based method to

determine an optimum inspection interval. Section 7 illustrates the methodology of section 6 with

an example. Finally, in section 8, we discuss the possibility of extending the methodology described

in this paper to a hierarchical Bayes formulation and provide some concluding remarks.

2 Brief Review of Literature

2.1 Bayes Type Algorithm for Detecting Changes in Process Monitoring

A Bayesian change detection approach has several advantages over non-Bayesian approaches. It

is technically simple and is easier to implement and allows incorporation of available engineering

information. There is a large amount of literature on Bayesian changepoint detection problems.

Smith (1975) presents the Bayesian formulation for a �nite sequence of independent observations.

In particular he gives details for binomial and normal distribution models. Some other works in this

area include

� Changepoint in univariate time series : Booth and Smith (1982), West and Harrison (1986).

� Gamma type random variables and Poisson processes : Diaz (1982), Hsu(1982), Raftery and

Akman (1986).
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Figure 1: Increase in process mean, process variance remaining the same .

� Changepoint in linear models : Bacon and Watts (1971), Ferreira (1975), Holbert and Broemel-

ing (1977), Choy and Broemeling (1980), Moen, Salazar and Broemeling (1985), Smith and

Cook (1990).

� Hierarchical Bayes formulation of changepoint model : Carlin, Gelfand and Smith (1992).

Most of these references provide methodology for o�-line problems. We are interested in process

control applications where on-line algorithms are needed. The next subsection describes the simplest

possible on-line scenerio.

2.2 Single Jump - Before and After-Change Parameter Values Known

In the simplest case, the parameter values (e.g., mean process level) before and after the change,

� = �0 and � = �1 respectively, are both known. Figure 1 shows a process where the mean level

changes after 50 cycles, but process variance remains the same. Figure 2 shows a process where the

mean is constant but variance increases after 50 cycles. These kinds of changes are typical in many

industrial processes. Detection of such changes has been discussed in detail by several authors in

di�erent contexts. Here we describe briey the solution to this problem to motivate our following

developments. Some of the pioneering work for this model is due to Girshick and Rubin(1952)

and Shirayaev(1961) and is described nicely in Basseville and Nikiforov(1993). Our notation will

follow closely that in Basseville and Nikiforov(1993). Assume that the prior distribution of (discrete)

change time t0 is Geometric(�) and is given by,

P (t0 = k) = �(1 � �)k�1
; k = 1; 2; : : :
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Figure 2: Increase in process variance, process mean remaining the same .
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Figure 4: Bayesian updating when there is no change in the process mean.Top : Porosity level,

Bottom: Updated probability that the process parameter has changed

where � is the probability of change in each production cycle, an estimate of which is available from

process history. Let 0 and 1 denote, respectively, the process states before and after the change.

The associated transition matrix is given by

P =

 
p(0j0) p(1j0)

p(0j1) p(1j1)

!
=

 
1� � �

0 1

!
:

Here p(ijj) is the transition probability from state j to state i at each ti; i = 1; 2; : : :. We will denote

by p(0) = 1� � and p(1) = � the prior probabilities associated with the states 0 and 1 respectively

at time 0. Then posterior probability that the process is at state 1 at the k th inspection/production

cycle can be calculated using the Bayes rule and is given by,

�k(1) =
�k�1(1)f(yk ; �1) + (1� �k�1(1)):�:f(yk; �1)

�k�1(1)f(yk; �1) + (1� �k�1(1)):�:f(yk; �1) + (1� �k�1(1))(1� �)f(yk ; �0)
;

where yk is the observation at the k th inspection/production cycle and f(yk ; �) is the likelihood at

the k th cycle , � = �0; �1:

The stopping-time rule is :

ta = min
k
f�k(1) � �g:

That is, a change is detected when the posterior probability of a change �k(1) exceeds � for the �rst

time. The value of � is chosen to satisfy certain criteria, such as to have a speci�ed probability of

having a false detection (i.e., a detect when the � = �0).
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Figure 5: Multiple jumps in the process level.

3 Models for Process Degradation

Generally prior information about the distribution of the change time is available from the past

history of the process. In the following description the process characterization parameter � is a

scalar. The theory, however, can be extended easily to the case when the parameter is a vector of

two or more quantities.

3.1 Multiple-Jump Case

In practice, the multiple-jump situation is more common than the single jump situation. Although it

is usual in the industrial process control applications to know the before-change parameter value (for

example, when a process starts, typically the machine parameters are set to some �xed ideal values),

once a process is running, more than one jump might occur between two consecutive inspection

points. Also the process is generally not inspected at every production cycle, but it is done at some

�xed time interval. Thus, it is necessary to modify and extend the simple model of the previous

section. When a process jumps several times, in an on-line approach, our goal is to detect a change of

an important magnitude as soon as possible after the underlying process characterization parameter

has reached a critical level.

Let us denote the production cycle times by t1; t2; : : :. Suppose that the actual measurements of

process output are taken at t(1); t(2); : : :. Thus t(k) = tj for some j � k, say t
(k) = tik ; k � 1. Let �0

(known) be the target for the process. Also, when the process starts or it is readjusted, we assume

that its level is reset to �0:

At each production cycle the process level either jumps (with probability q) or remains at the same
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level (with probability 1�q), and if there is a jump, the magnitude of the jump is a random variable

with cumulative distribution function H(:;�
~
): So the jump at the i th production cycle is Yi = Xi�i

where the �i's are independent Bernoulli random variables with P (�i = 1) = q; P (�i = 0) = 1� q;

and

Xi
iid
� H(:;�

~
);

The level of the process after the kth measurement is denoted by �
(k). This quantity can be

calculated recursively as

�
(k) � �ik = �0 +

ikX
j=1

Yj = �
(k�1) +

ikX
j=ik�1+1

Yj:

The posterior density of � (expressing the state of knowledge given the available past data) after

k th measurement is given by

�
(k)(�) � �

(k)(�jyk) =

R
�
(k�1)(�(k�1)) : g(�j�(k�1)) : f(yk ; �) d�

(k�1)R R
�(k�1)(�(k�1)) : g(�j�(k�1)) : f(yk; �) d�(k�1) d�

; (1)

=
f(yk ; �)g

�(�)R
f(yk ; �)g�(�)d�

where g(�j�(k�1)) is the pdf of �(k) given �
(k�1) and g

�(�) =
R
�
(k�1)(�(k�1))g(�j�(k�1))d�(k�1); is

the new prior just before the kth measurement. The stopping rule is formulated as in section 2.2.

3.2 Several Jumps Approximation to Trend

Now we consider the case when the process has a stochastic trend. In such a situation we are

interested in detecting the change before the process deviates too much from the target, typically

when the process level goes beyond a critical level. This case can be thought of as a combination

of a number of small jumps with random size. This is a special subcase of the several jumps case

with q = 1: We model each jump as a gamma(�;�) increment. Then the sum of several jumps also

follows a gamma distribution:0
@ ikX

j=ik�1+1

Yj

1
A � Gamma((ik � ik�1)�; �) ; (2)

g

�
�j�(k�1)

�
=

�
[ik�ik�1]�

� ([ik � ik�1]�)
: exp

�
��(� � �

(k�1))
�
:

h
� � �

(k�1)
i(ik�ik�1)��1

; � > �
(k�1)

:

The posterior density can be updated as usual using Bayes rule. The stopping rule is as before.

Although the availability of a closed form expression for the conditional density of �(k) given �(k�1)

makes the calculation relatively simpler, obtaining an analytical solution for the posterior density is

impossible and even a numerical solution is computationally demanding. This has led us to use a

simulation based approach using rejection sampling to compute the posterior distribution of �. This

approach will be described in the next section.
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Figure 6: Multiple jumps approximation to trend.

4 Simulation Based Approach for Updating the Prior Dis-

tribution

The calculation of the posterior density of � involves several integrals, as shown in equation (1).

Computational needs will be considerably higher if the parameter � is a vector. Such multidimen-

sional numerical integration is di�cult to carry out, requiring close attention to numerical methods

and substantial amounts of computer time. Also since our problem is an on-line algorithm, �nding

the range of numerical integration at a later stage is not an easy task. This has led us to use the

simulation based technique of rejection sampling, described by Smith and Gelfand(1992), to evaluate

such integrals. Needed calculations are easy to program and can be carried out quite e�ciently by

using any standard mathematical/numerical software package. The method of rejection sampling

used here is described in detail in the appendix.

We initially generate a large number of observations from the prior distribution g(�) . Then we

propagate those observations according to our random gamma-distributed increment model given

by equation (2), providing a large sample from the propagated prior density, say g�(�); at the next

inspection. Then we combine this propagated prior with the likelihood to obtain a large sample from

the posterior. For the trend case q = 1; so in order to get the propagated prior we add a random

gamma increment to each observation at each production cycle.

To obtain the posterior distribution, we use rejection sampling. Rejection sampling can be viewed

as a random �lter. Points pass through the �lter with probability equal to the relative likelihood

of the point, as determined by the likelihood function of the data. The result is a random sample

from the posterior distribution that can be used to approximate this distribution. Details are given

8



in the appendix.

We have written a FORTRAN program using NAG routines (The Numerical Algorithms Group

Limited, 1993) to calculate the probability distribution updated at each inspection and the proba-

bility that the process is beyond the critical level. We have used S-Plus (Statistical Sciences, 1995)

to obtain graphical output. The program requires the following inputs:

1. An initial prior distribution for �,

2. The inspection interval,

3. Parameters for the gamma increment distribution,

4. The distribution of measurement errors,

5. The observations at the actual inspections,

6. The critical level for the process output level.

The initial prior distribution for � can be estimated from the knowledge about the precision of the

process (eg., how precise the machine is) and the measurement error distribution can be estimated

from the past measurement errors. The parameters of the gamma increment model can also be

estimated from past process data history.

5 Example of Process Monitoring

We consider a process that jumps by a random amount at every production cycle. The size of the

jump at each cycle follows a gamma distribution with mean 0.2 and variance 0.1. The initial level of

the process is 0. The critical level is �c = 5:1. When the process is reset, the process output variable

has a normal distribution with mean 0 and standard deviation 0.25. This variation is expected to

be low and may be caused, for example, by the errors in adjusting the process equipment. We

describe the measurement error with a normal distribution with mean 0 and standard deviation

0.5. In our illustration the process is inspected at every 10th production cycle. Suppose that the

observed values were yt(1) = 2:8; yt(2) = 3:8; yt(3) = 3:9; yt(4) = 4:1 respectively, as marked by small

squares in Figure 7. After each observed value of y is reported, the Bayesian updating formula is

used to obtain the current posterior distribution. If the posterior probalitity of � � �c exceeds 0.1,

the process is stopped and readjusted.

At each inspection, the dotted and the solid curves in Figure 7 denote the prior and posterior

distributions respectively. At the �rst inspection our observation is towards the right tail of the

prior suggesting that the process is a bit higher than predicted by the prior. The Bayesian updating

scheme accounts for this and we get a posterior that is centered to the right of the prior mean. At

the second inspection our observed value is a little lower than the center of the prior. This is also

reected in the posterior : although the prior probability of exceeding the critical level is greater

than 0.1, the posterior distribution has a negligible probability above the critical level. This implies

that in the light of our observations at the �rst two inspections, we do not yet need to adjust the

process. After the third inspection, the posterior distribution again does not suggest that the process

should be adjusted. Note that in this case the prior probability of exceeding the critical level is more

than 0.5. When combined data, however, there is not much evidence (probability = 0.06) that the

9
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Figure 7: Bayesian Updating for Trend Case : Gamma Jump at Each Production Cycle.

process output level has reached the critical limit. At the fourth inspection our observation is at the

left tail of the prior, but the posterior indicates a probability of 0.26 that � has crossed the critical

level. At this point the decision is to stop the process for adjustment.

6 Optimization of the Inspection Interval

In this section, for a given cost structure, we investigate the e�ect that the inspection interval has

on total cost.This allows choosing the inspection interval to minimize the average cost over a long

period of time.

For a given critical level �c we calculate the long run average cost for di�erent inspection intervals.

The optimum inspection interval is the one that minimizes the long run average cost of production.

We also use a simulation-based approach for this calculation.

First we �x an inspection interval, say k. We generate 1000 values from the prior distribution

and let the process degrade for the �rst k production cycles. At the kth cycle one of these degraded

numbers, say �
� is randomly selected and a number, say y is generated from the likelihood f(:; ��):

This y is treated as the pseudo observed value at the kth production cycle (or equivalently, the �rst

inspection) and is used for updating the prior to get a posterior. At each inspection we have two

options: continue the process or adjust the process. If the updated probability of exceeding the

cuto� value �c is more than the (predetermined) threshold level (e.g., 0.1) the process is readjusted.

Thus we have a prior corresponding to a process restart instead of the usual updated posterior. Then

the posterior is considered as the new prior and is allowed to degrade for the next k cycles after

which another pseudo observation is generated by the above mechanism. Updating is performed

10



again and the procedure is repeated for a large number (say N ) of production cycles.

Three types of costs are associated with the process :

� Cd: cost per unit of (squared) deviation between � and the target �0:

� Ca: cost of a single adjustment of the process.

� Ci: cost of a single inspection.

Total cost over N cycles is calculated as,

Total cost = Cost of deviation + Cost of adjusting the process + Cost of inspection.

Cost of deviation at a particular cycle is Cd times the sum of the squared deviations of the (possibly)

degraded numbers from the target. Summing these over all N cycles gives the total cost of deviation.

Total cost of inspection is Ci � [N=k] ; where [z] denotes the largest integer not exceeding z. Total

cost of adjustment = Ca� number of adjustments (in N cycles). The long run average cost per

unit time is the ratio of the total cost over N cycles to N , the total number of cycles, provided N

is su�ciently large. We calculate the long run average costs for di�erent values of k and choose the

value of k that minimizes total cost.

7 Examples of Inspection Optimization

The long run expected cost based decision criteria, as discussed in the previous section, can be

illustrated with the following example. We generated 10,000 observations from the process described

in the previous example. But this time we varied the inspection intervals. The costs of deviation

(per unit time), adjustment and inspection were �xed at 10, 200, and 100 respectively.

Table 1: Comparison of Long Run Average Costs for Di�erent Inspection Intervals

Inspection Interval Long Run Average Cost

1 185.92

2 141.24

3 123.64

4 118.91

5 119.29

6 121.98

7 122.06

8 124.80

9 124.88

10 130.29

We can see from the table 1 that the long run expected cost is minimized when the inspection

interval is 4 (the �gure for 5 is very close). So the optimum inspection interval should be 4 or 5.

11



Table 2: Comparison of Short Run Average Costs for Di�erent Inspection Intervals : 50 Cycles Per

Hour, 8 Hrs. Shift

Inspection Interval Short Run Average Cost s.d. 25 percentile 75 percentile

1 182.57 9.39 179.52 187.81

2 137.30 6.67 132.74 142.35

3 121.78 8.08 117.16 126.75

4 118.81 10.24 114.42 123.92

5 115.97 8.32 109.82 120.91

6 114.69 10.29 107.60 121.06

7 117.93 9.35 110.38 123.92

8 120.01 11.85 114.24 127.31

9 123.53 10.57 116.62 130.65

10 126.55 10.37 119.44 133.08

If we inspect too often, cost of inspection will dominate the �gure for average cost. On the other

hand, if we do not inspect frequently enough, the cost of deviation will be dominant. Thus optimum

inspection interval is the one that balances these costs.

Table 2 is a comparison of short run average costs for di�erent inspection intervals. In many

practical situations a process runs for a shift of 8 or 9 hours and then the process is adjusted before

the next shift starts. This means that the long run average cost may not be a feasible idea in many

practical situations. To illustrate this situation we consider a process that runs for 8 hours with 50

cycles per hour. For each �xed inspection interval, we generate 200 such realizations of the process

and calculate the average cost over 8 hour period. Table 2 shows that the optimum inspection

interval is 6, but the average costs when the inspection intervals are 4, 5, 6 or 7 are very close.

So although the results of table 1 and table 2 are not same, they are close. We do not lose much

by approximating the short run average cost by long run average cost to make decision about the

inspection interval.

8 Concluding Remarks And Directions for Future Develop-

ments

Although we have illustrated the multiple jump case for \jumps in mean level" of the process, the

simulation-based algorithm is general enough to handle changes in other parameters of the process

as well. Some other types of changes that one may be interested in include :

� Multiple changes in the process variance, process level (mean) remaining the same.

� Trend in the process level (mean) associated with an increase in the process variance. This is

also of interest in modeling some �nancial time series.

12



We have so far assumed the process parameters to be either known or estimated from the past

history. If we estimate them from the past history the analyses become empirical Bayesian in nature.

If no information about the gamma parameters and/or the likelihood parameters is available, our

model can be readily extended to a hierarchical Bayesian one by assigning di�use prior distributions

to these parameters. See Gelman, Carlin, Stern and Rubin(1995).

Also note that the equation (1) is very general, it does not involve any particular density for

g(:j�(k�1)). In the trend example we have assumed gamma increments, but there is nothing special

to this distribution. We could have modeled the jumps as any other sequence of independent random

variables.

Acknowledgements

This work was supported by the program for Integrated Design, NDE and Manufacturing Sciences

under U.S. Department of Commerce, National Institute of Standards and Technology Cooperative

Agreement No. 70NANB4H1535.

Appendix : Rejection Sampling

Suppose that we have random variates from an absolutely continuous density m1(x). But what we

really want is a sample from m2(x), a probability density that is absolutely continuous with respect

to m1(x): Rejection sampling is a useful tool in such situation. This methodology can be extended

to the case when m2(x) is not known completely, but is known to be proportional to some function

m3(x), [i.e., m2(x) = m3(x)=
R
m3(x)].

The algorithm proceeds as follows :

1. Find a positive constant M such that m3(x)=m1(x) �M , for all x:

2. Generate x from m1(x):

3. Generate u from Uniform(0,1).

4. If u � m3(x)=(M �m1(x)) accept x, otherwise go to step 2.

For details see Smith and Gelfand(1992).

The rejection sampling algorithm can be used very e�ectively to sample from the posterior

distribution (Meeker and Escobar, 1998). When formulated in terms of the relative likelihood, the

algorithm has more intuitive appeal. Let L(�; y) denote the likelihood of �; and suppose that the

maximum of the likelihood is attained at �̂: Then the relative likelihood is de�ned as

R(�) =
L(�; y)

L(�̂; y)
:

We note that the posterior distribution of � can be written as

h1(�jdata) =
L(dataj�)h0(�)R
L(dataj�)h0(�)d�

=
R(�)h0(�)R
R(�)h0(�)d�

;

where h0(�) is the prior pdf of �: So m1 = h0(�);m3 = R(�)h0(�);m3=m1 = R(�) � 1(= M ): Hence

the rejection sampling algorithm in terms of relative likelihood can be formulated as follows :

13



1. Generate � from the prior.

2. Generate u from Uniform(0,1).

3. If u � R(�), accept �, otherwise go to step 1.

We use this approach to generate a large sample from the posterior distribution �
(k)(�jyk):
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