Microbial Control of Black Cutworm (Lepidoptera: Noctuidae) in Turfgrass Using Agrotis ipsilon Multiple Nucleopolyhedrovirus

Thumbnail Image
Date
2006-01-01
Authors
Prater, Callie
Redmond, Carl
Barney, Walter
Bonning, Bryony
Potter, Daniel
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Bonning, Bryony
Affiliate Professor
Research Projects
Organizational Units
Organizational Unit
Entomology

The Department of Entomology seeks to teach the study of insects, their life-cycles, and the practicalities in dealing with them, for use in the fields of business, industry, education, and public health. The study of entomology can be applied towards evolution and ecological sciences, and insects’ relationships with other organisms & humans, or towards an agricultural or horticultural focus, focusing more on pest-control and management.

History
The Department of Entomology was founded in 1975 as a result of the division of the Department of Zoology and Entomology.

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Entomology
Abstract

Agrotis ipsilon multiple nucleopolyhedrovirus (family Baculoviridae, genusNucleopolyhedrovirus, AgipMNPV), a naturally occurring baculovirus, was found infecting black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), on central Kentucky golf courses. Laboratory, greenhouse, and field studies investigated the potential of AgipMNPV for managing black cutworms in turfgrass. The virus was highly active against first instars (LC50 = 73 occlusion bodies [OBs] per μl with 2-μl dose; 95% confidence intervals, 55–98). First instars that ingested a high lethal dose stopped feeding and died in 3–6 d as early second instars, whereas lethally infected fourth instars continued to feed and grow for 4–9 d until death. Sublethal doses consumed by third or fifth instars had little or no effect on subsequent developmental rate or pupal weight. Horizontal transmission of AgipMNPV in turfgrass plots was shown. Sprayed suspensions of AgipMNPV (5 × 108–6 × 109 OBs/m2) resulted in 75 to >93% lethal infection of third or fourth instars in field plots of fairway-height creeping bentgrass, Agrostis stolonifera (Huds.), and on a golf course putting green collar. Virus spray residues (7 × 109 OBs/m2) allowed to weather on mowed and irrigated creeping bentgrass field plots significantly increased lethal infection of implanted larvae for at least 4 wk. This study, the first to evaluate a virus against a pest in turfgrass, suggests that AgipMNPV has potential as a preventive bioinsecticide targeting early instar black cutworms. Establishing a virus reservoir in the thatch and soil could suppress successive generations of that key pest on golf courses and sport fields.

Comments

This article is from Journal of Economic Entomology 99, no. 4 (2006): 1129–1137, doi:10.1603/0022-0493-99.4.1129.

Description
Keywords
Citation
DOI
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2006
Collections