Temperature dependence of the magnetostriction and magnetoelastic coupling in Fe100−xAlx (x = 14.1,16.6,21.5,26.3) and Fe50Co50

A. E. Clark
Clark Associates

J. B. Restorff
United States Navy

M. Wun-Fogle
United States Navy

D. Wu
Iowa State University

Thomas A. Lograsso
Iowa State University, lograsso@ameslab.gov

Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_conf

Part of the Condensed Matter Physics Commons, and the Metallurgy Commons

Recommended Citation
http://lib.dr.iastate.edu/ameslab_conf/16

This Conference Proceeding is brought to you for free and open access by the Ames Laboratory at Digital Repository @ Iowa State University. It has been accepted for inclusion in Ames Laboratory Conference Papers, Posters, and Presentations by an authorized administrator of Digital Repository @ Iowa State University. For more information, please contact digirep@iastate.edu.
Temperature dependence of the magnetostriction and magnetoelastic coupling in Fe\textsuperscript{100-\textit{x}}Al\textsubscript{\textit{x}} (\textit{x} = 14.1, 16.6, 21.5, 26.3) and Fe\textsubscript{50}Co\textsubscript{50}

A. E. Clark, J. B. Restorff, M. Wun–Fogle, D. Wu, and T. A. Lograsso

Citation: J. Appl. Phys. 103, 07B310 (2008); doi: 10.1063/1.2831360
View online: http://dx.doi.org/10.1063/1.2831360
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v103/i7
Published by the AIP Publishing LLC.

Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors

ADVERTISMENT

Instruments for advanced science

Gas Analysis
- dynamic measurement of reaction gas streams
- analysis and thermal analysis
- molecular beam analysis
- dissolved species analysis
- instrumentation, environmental and ecological studies

Surface Science
- UHV TPD
- NRA
- and point detection in ion beam work
- sequential imaging - surface mapping

Plasma Diagnostics
- plasma source characterization
- arc and induction process research and testing
- analysis of neutral and radical species

Vacuum Analysis
- partial pressure measurement and control of processing gases
- reaction pathway process control
- vacuum diagnostics
- vacuum coating process monitoring

contact Hiden Analytical for further details
info@hideninc.com
www.HidenAnalytical.com
CLICK to view our product catalogue
Temperature dependence of the magnetostriction and magnetoelastic coupling in Fe_{100-x}Al_x (x = 14.1, 16.6, 21.5, 26.3) and Fe_{50}Co_{50}

A. E. Clark
Clark Associates, Adelphi, Maryland 20783, USA

J. B. Restorff and M. Wun–Fogle
Naval Surface Warfare Center, Carderock, Division, W. Bethesda, Maryland 20817-5700, USA

D. Wu and T. A. Lograsso
Ames Laboratory, Ames, Iowa 50011-3020, USA

(Presented on 9 November 2007; received 12 September 2007; accepted 18 October 2007; published online 25 January 2008)

In this paper, we report magnetostriction measurements, (\(\lambda_{100}\)) on Fe-rich Fe–Al alloys and Fe_{50}Co_{50} as functions of temperature from 77 K to room temperature (RT). From these measurements and elastic constant (\(c^\prime\)) measurements, the tetragonal magnetoelastic coupling constants (\(b_1, b_2\)’s) were calculated. Significant differences were found between our RT measurements and earlier magnetostriction measurements for the higher Al concentration alloys (16.6%, 21.5%, 26.3% Al) and the Fe_{50}Co_{50} alloy. Reminiscent of the temperature dependence of \(\lambda_{100}\) for pure Fe, magnetostriction changes with temperature are minimal for Fe–Al alloys having the disordered bcc (A2) structure (x 19% Al). In contrast, the alloy possessing the ordered (DO\(_3\)) structure shows an anomalous decrease in magnetostriction in \(\lambda_{100}\) with decreasing temperature. For the Fe–Al alloy system, the magnetoelastic coupling constant, \(|b_1|\), exhibits a peak at room temperature maximizing at 16.6% Al with a value of 12.3 MJ/m\(^3\). For Fe_{50}Co_{50}, \(|b_1|\) was calculated to be 34 MJ/m\(^3\) at room temperature. © 2008 American Institute of Physics. [DOI: 10.1063/1.2831360]

INTRODUCTION

In the iron rich Fe_{100-x}Al\(_x\) and Fe_{100-x}Ga\(_x\) alloys, the tetragonal distortions, \(\lambda_{100}\)’s, have unusual solute dependences.\(^2\) As the nonmagnetic elements are added to iron, \(\lambda_{100}\)’s rise approximately quadratically, exhibiting large magnetostrictive peaks in both alloy systems at x = 15. The \(\lambda_{100}\) values decrease sharply beyond this point as the A2 structure undergoes chemical ordering. Since the strength of the magnetoelastic coupling \(b_1\) depends upon the product of the magnetostriction and the elastic constants \(c\), \(b_1 = -3\lambda_{100} c^\prime / (c_{11} - c_{12})/2\), in order to compare \(b_1\) in Fe-based alloys, e.g., Fe–Al, Fe–Ga, and Fe–Be, knowledge of both the \(\lambda_{100}\) and \(c^\prime\)’s temperature and solute concentration dependence is vital.

Room temperature magnetostriction measurements of Fe–Al alloys indicating a five-fold rise in magnetostriction with Al additions up to 30% Al were made and reported by Hall.\(^1\) Measurements at x = 9.1 and 16.3 by Gersdorf\(^2\) about the same time indicated that the magnetostriction decreases moderately with temperature, and latter measurements by Cook and Pavlovic\(^4\) on alloys near 25% Al reveal an anomaly near 220 K. Not all measurements are in agreement\(^4\) and none have reported values of the magnetoelastic constants. To determine the values of these constants in this paper, we measured the magnetostrictions of Fe_{100-x}Al\(_x\) (x = 14.1, 16.6, 21.5, and 26.3) as functions of temperature and interpolated the elastic constant measurements of Leamy \textit{et al.}\(^5\)

\(^4\)Electronic mail: marilyn.wun-fogle@navy.mil.

In this paper, the magnetoelasticity of the Fe-rich Fe–Al alloys is compared to those of the similar highly magnetostrictive Fe–Ga alloys (Al and Ga belonging to column IIIB elements) and the Fe–Be alloys (column IIA) whose large magnetostriction and temperature dependent elastic moduli have been recently measured\(^6\)–\(^8\) plus an important highly magnetostrictive alloy Fe_{50}Co_{50}.\(^9\)

EXPERIMENT

Single crystal samples (15 mm diam × 25 mm length) of Fe_{85.5}Al_{14.1}, Fe_{83.4}Al_{16.6}, Fe_{78.5}Al_{21.5}, and Fe_{73.7}Al_{26.3} were prepared using the Bridgman method as described elsewhere.\(^10\) Fe_{50}Co_{50} alloys were prepared using a modified strain annealing procedure, wherein the alloys were first processed using the Bridgman method to produce large crystals of the high temperature fcc phase which in turn resulted into large bcc phases at room temperature. Then, using a conventional strain annealing method (950 °C, 1 week), bcc crystals were grown of sufficient size to extract specimens for strain and elastic constant measurements. Standard strain gauge techniques were used to calculate values of (3/2)\(\lambda_{100}\) as functions of temperature between 77 K and room temperature. [The quantity (3/2)\(\lambda_{100}\) represents the maximum magnetostriction (sometimes denoted by \(\lambda_{\gamma}^2\) or \(h_1\)) and is the actual value measured.]

Shown in Fig. 1 are the values of (3/2)\(\lambda_{100}\) for samples of Fe–Al from 77 K to room temperature. For the 14.1% and 16.6% Al alloys, the magnetostriction is almost temperature independent, akin to that of Fe.\(^11\) A very large magnetostriction is found for the 16.6% Al alloy. For the 21.5% Al alloy,
the magnetostriction temperature dependence is anomalous, with a large (50%) increase in magnitude with temperature. At 26.3% Al, the \((3/2)c_{100}\) remains very small (less than iron) at all temperatures. We found that for the Fe\(_{50}\)Co\(_{50}\) alloy, \((3/2)c_{100}\) is about 1.5 times that of the largest magnetostrictive Fe–Al alloy and exhibits the anomalous increase in magnetostriction with temperature. See discussion section.

DISCUSSION

Using the magnetostriction data of Fig. 1 and the elastic constants from Leamy et al.,\(^5\) the temperature dependences of the tetragonal magnetoelastic constants \((b_i)'s\) were calculated for the Fe–Al alloys. Between 77 K and room temperature, only small temperature dependences were found in the \(c'\) elastic constants, the elastic constants decreasing \(-6%\) for the 14.1% alloy and \(-12\)% for the 26.3% alloy. Figure 2 shows the \(b_i's\) calculated using the relationship \(b_i = -3c_{100}c'\). For the 14.1% alloy, the small rise in \((3/2)c_{100}\) with temperature is offset by the small decrease in \(c'\) over this temperature range yielding an almost temperature independent \(b_1\). The magnetoelastic features of the other Fe–Al alloys remain similar to those of the magnetostricions. The temperature dependent anomaly of the 21.5% alloy still exists. The low magnetostriction values of the 26.3% alloy are consistent with the proximity of this alloy to the Curie temperature.

In Fig. 3, \((3/2)c_{100}\) for the Fe–Al alloys at room temperature are compared to those reported earlier by other authors. A striking disagreement is found in the vicinity of the 16.6% Al sample. The value of \((3/2)c_{100}\) reported in this paper is \(\sim 40\)% higher than indicated by Hall\(^1\) and Gersdorf\(^9\) for similar Al concentrations. This is different from the 14.1% sample where the agreement is excellent. Our samples and those of Gersdorf were both prepared by slow cooling, although the alloys of Gersdorf also included a deoxidizing procedure before single crystal growth.\(^3\) Hall reports furnace cooled alloys, chamber cooled alloys, and water quenched alloys, which he calls ordered, partially ordered, and disordered alloys, respectively.\(^4\) (The exact cooling rates of the Hall and Gersdorf alloys were not reported.) At a concentration of \(\sim 19\)% Al, the magnetostriction reported by Hall was found to be strongly dependent upon atomic ordering, with the partially disordered samples having a larger \((3/2)c_{100}\) than both the disordered and ordered samples. The degree of atomic ordering is not believed to be the cause of the large discrepancy in the results near the 16.6% Al alloy. Similarly, ordering apparently cannot account for the large difference \((\sim 33\%)\) in our reported measurements and those of Hall near 22% Al, where Hall finds only a minimal effect of ordering on \((3/2)c_{100}\). On the other hand, ordering was again found to have a great effect on \((3/2)c_{100}\) for alloys near 27% Al, with the magnetostriction of the ordered state over a factor of 2 larger than that of the disordered state.\(^1\) Because of the importance of ordering near 27% Al and the rapid drop in Curie temperature near this composition,\(^12\) \((3/2)c_{100}\) at this concentration is likely to be dependent upon the details of alloy preparation. The large values of \((3/2)c_{100}\) for alloys with 16.6% and 21.5% Al, plus the relatively large value of \(c'\) for these alloys\(^5\) imply large values for the magnitude of \(b_1\) for these concentrations.

It is possible to compare the solute dependences of \(b_1\) of Fe–Al alloys with those of Fe–Ga alloys for Al and Ga concentrations up to \(\sim 30\)% and Fe–Be alloys for concentrations...
up to $\sim 11\%$ Be. The decrease in value of c' of Fe–Ga alloys with Ga content is similar to that found in the Fe–Al alloys, however, much larger.2,7,13 The $(3/2)\lambda_{100}$ of the Fe–Ga alloys are well known.2 For the Fe–Be alloys, the $(3/2)\lambda_{100}$ and the c''s have also been measured.8 In Fig. 4 are the compared values of $-b_1$ for Fe–Al, Fe–Ga, and Fe–Be at room temperature. Although the c' of the Fe–Al alloys are larger than those of the Fe–Ga alloys, the largest magnitudes of b_1 are found in the Fe–Ga system. The largest occurs near 19–20% Ga. Because of the larger c' of Fe–Al, the magnitudes of b_1 are larger than expected from comparing only the magnetostriction values. At $\sim 16.6\%$ Al, the magnitude of b_1 is only a few percent lower than those of the Fe–Ga alloy—the stiffer elastic constant is not quite high enough to compensate for the lower magnetostriction. More magnetostriction measurements of alloys at concentrations between 17% and 20% Al would help determine the important details of the coupling in this critical composition region. Falloffs of the couplings for concentrations of Al and Ga above 20% are rapid; however, while the couplings of the Fe–Al alloy approach to zero (because of the lower Curie temperature), those of the Fe–Ga alloy reverse and rise to a second peak. The $-b_1$ values at lower temperatures (not reported here) show that for Fe–Al, the largest measured value of $|b_1|$ (~ 13.4 MJ/m3) occurs for the 16.6% Al sample at 77 K. Reported magnetostriction and elastic constant measurements on the Fe–Be system extend only to $\sim 11\%$ Be. Over this composition range, the coupling is somewhat larger than those of the Fe–Ga alloys and about twice as large as those of the Fe–Al alloys.

In Fig. 5, the magnetostrictions $(3/2)\lambda_{100}$, elastic constants (c'), and magnetoelastic couplings $(-b_1)$ of Fe$_{50}$Co$_{50}$ from 77 K to RT are reported. The earlier magnetostriction measures of Hall for Fe$_5$Co$_{95}$ at RT are significantly lower [$((3/2)\lambda_{100})=248 \times 10^{-6}$] than our value at Fe$_{50}Co_{50}$, yielding a value of $-b_1$ about 12% lower than those obtained from measurements reported here. Because of the near temperature independence of c', the anomalous positive temperature dependence observed in the magnetostriction still remains in the temperature dependence of $|b_1|$.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research Code No. 321MS, NSWCCD In-house Laboratory Independent Research Program, and Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. The authors would like to thank Dr. Brad Peterson for the temperature dependent elastic constant measurements of Fe$_{50}$Co$_{50}$.

1R. C. Hall, J. Appl. Phys. 30, 816 (1959).
14B. W. Peterson, Naval Surface Warfare Center, Carderock Division, W. Bethesda, MD 20817 (unpublished).