Identifying Interaction Sites in "Recalcitrant" Proteins: Predicted Protein and RNA Binding Sites in Rev Proteins of HIV-1 and EIAV Agree with Experimental Data

Thumbnail Image
Date
2006-01-01
Authors
Lee, Jae-Hyung
Jernigan, Robert
Carpenter, Susan
Honavar, Vasant
Dobbs, Drena
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Jernigan, Robert
Distinguished Professor
Person
Dobbs, Drena
University Professor Emeritus
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Computer ScienceBiochemistry, Biophysics and Molecular BiologyGenetics, Development and Cell BiologyBioinformatics and Computational Biology
Abstract

Protein-protein and protein nucleic acid interactions are vitally important for a wide range of biological processes, including regulation of gene expression, protein synthesis, and replication and assembly of many viruses. We have developed machine learning approaches for predicting which amino acids of a protein participate in its interactions with other proteins and/or nucleic acids, using only the protein sequence as input. In this paper, we describe an application of classifiers trained on datasets of well-characterized protein-protein and protein-RNA complexes for which experimental structures are available. We apply these classifiers to the problem of predicting protein and RNA binding sites in the sequence of a clinically important protein for which the structure is not known: the regulatory protein Rev, essential for the replication of HIV-1 and other lentiviruses. We compare our predictions with published biochemical, genetic and partial structural information for HIV-1 and EIAV Rev and with our own published experimental mapping of RNA binding sites in EIAV Rev. The predicted and experimentally determined binding sites are in very good agreement. The ability to predict reliably the residues of a protein that directly contribute to specific binding events - without the requirement for structural information regarding either the protein or complexes in which it participates - can potentially generate new disease intervention strategies.

Comments

This is a proceeding from Pacific Symposium on Biocomputing 11 (2006): 415. Posted with permission.

Description
Keywords
Citation
DOI
Source
Copyright
Sun Jan 01 00:00:00 UTC 2006