The Role of Maternally Supplied Cell Death Components in Primordial Germ Cell Development of *Drosophila melanogaster*.

Danielle Pohl and Clark R. Coffman, PhD.
Department of Genetics, Developmental, and Cell Biology
Iowa State University
Why fruit flies:
• Model organism
• 75% known human diseases have a recognizable match in the genome of flies
• 50% of fly protein sequences have mammalian homologs
• Guides our understanding of:
 • Cancer
 • Heart disease
 • Malformations
 • Disorders
Introduction

Half of the Primordial Germ Cells Die During the Early Phases of Migration

![Graph showing decrease in total number of PGCs over developmental stages.](image-url)
Cell Death Pathway

- Drosophila genes are shown in black, mammalian homologues are shown in red.
- We are examining embryos lacking all maternal contributions of cell death.
Methods

Hypothesis: maternally supplied apoptosis regulators are mediating germ cell death
Anticipated Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Supports hypothesis</th>
<th>Rejects hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother</td>
<td>Eggs lack cell death factors</td>
<td>Eggs lack cell death factors</td>
</tr>
<tr>
<td>Father</td>
<td>Sperm lacks cell death factor/Balancer</td>
<td>Sperm lacks cell death factor/Balancer</td>
</tr>
<tr>
<td>Embryos</td>
<td>Lacks all cell death factors</td>
<td>Cells are capable of dying</td>
</tr>
<tr>
<td>Embryo B</td>
<td></td>
<td>Embryo A</td>
</tr>
</tbody>
</table>

Reject Hypothesis - Wild-type

Supports Hypothesis - Excess germ cells
Future Directions

• Count the number of germ in the embryos collected from the final cross described.

• Evaluate hypothesis.

• Live imaging of cell death with markers of cell death if data supports the hypothesis.

• If hypothesis is not supported, determine if another form of cell death plays a role in the death of the germ cells through screens of proteins involved.
References

Genetic Details

FLP = heat-shock FLP
M = Dark82 Deletion
+ = wild-type
Fs = Dominant Female Sterile
FRT = Forced Recombination Site
Anticipated Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Mother</th>
<th>Germ-line</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother</td>
<td>Dark/OvoD</td>
<td>Dark/OvoD</td>
<td>Dark/Dark</td>
</tr>
<tr>
<td>Father</td>
<td>Dark/Dark</td>
<td>Dark/Dark</td>
<td>Dark/Cyo-LacZ</td>
</tr>
<tr>
<td>F1</td>
<td>Dark/Dark</td>
<td>Dark/Cyo-LacZ</td>
<td></td>
</tr>
<tr>
<td>Mother mRNA</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>F1 mRNA</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

- **Supports Hypothesis**
- **Excess germ cells**
- **Wild type**

A - Reject Hypothesis

B - Supports Hypothesis
Thank You!

- Dr. Coffman
- Megan Merolla
- Jasmine Anderson
- Caitlin Grudzinski
- Iowa State University McNair Program