INDEX TO VOL. XVI, RESEARCH BULLETINS
Nos. 185-191

A
Acetylmethylcarbinol, in cheese... 360
Adhesion, types of device for obtaining tractor.......................... 276
Age of house, influence on housing status.................................. 150
Agricultural Economics Section, bulletin from............................ 49a
Agricultural Engineering Section, bulletin from............................ 257

B
Bacteria, number and types in cheese....................................... 351
"Bacteriology of Cheese. II. Effect of Lactobacillus casei on the
Nitrogenous Decomposition and Flavor Development in Cheddar
Cheese Made from Pasteurized Milk," by C. B. Lane and B. W.
Hammer
Historical .. 337
Introduction .. 344
Literature cited .. 343
Methods .. 349
Manufacture of cheese.. 349
Nitrogenous decomposition in cheese...................................... 350
Numbers and general types of bacteria in cheese.......................... 351
Results ... 352
Diacetyl and acetylmethylcarbinol in cheese............................... 368
Effect of adding each of several strains of L. casei to pasteurized
milk used for making cheddar cheese on the nitrogenous
decomposition and flavor development in the cheese.................... 352
Effect of adding Strain 4 to pasteurized milk used for making
cheddar cheese on the numbers and general types of
bacteria in the cheese.. 369
Results, discussion of... 373
Summary ... 339
Bacteriological Section, bulletin from.................................... 377
Bird, E. W., co-author of "The Preparation of a Non-Desiccated Sodium Caseinate Sol and Its Use in Ice Cream".............. 177
Botany and Plant Pathology Section, bulletin from....................... 209
Bruising stalks and ears, effect of.................................... 39
Butter cultures, diacetyl and acetylmethylcarbinol in.................. 383
Butylene glycol (2, 3-), reduction of diacetyl and acetylmethylcarbinol to... 385

C
Cheese, manufacture of.. 349
Nitrogenous decomposition in... 351
Collins, Edgar V., co-author of "Treactive Efficiency of the Farm
Tractor" .. 257
Corn, effect of imitation hail damage to.................................... 1
Dairy Industry Section, bulletin from 177, 337, 377
Davidson, J. Brownlee, co-author of 'Tractive Efficiency of the Farm Tractor' 257
Design, factors in of traction members 274
Diacetyl, in cheese 368
Dry weather, effects on yields of hail injured corn 48

E
"Effect of Injury in Imitation of Hail Damage on the Development of the Corn Plant, the," by John C. Eldredge 1
Experimental 5
Effect of bruising stalks and ears and shredding the leaves 39
Comparison of shredding and bruising 44
Damage to ear and kernel 45
Effect of broken stalks on yield 44
Effect of bruising only 40
Market grade of bruised corn 46
Effect of dry weather on the yields of injured corn 48
Effect of injury on time of maturity 50
Effect of leaf injury on the yield and quality of corn 25
Effect of complete defoliation (stripping) 26
Effect of removing one-third and two-thirds of the leaves 34
Effect of severe shredding 30
Effect on weight per bushel 29
Results of minor leaf injuries 36
Materials and methods 12
Growth and development of the corn plant 23
Layout of plots 22
Introduction 5
Literature cited 58
Previous studies on leaf and stalk injury 7
Purpose of the investigation 10
Summary 3
Efficiency, tractive 266
Eldredge, John C., author of "Effect of Injury in Imitation of Hail Damage on the Development of the Corn Plant" 1

F
Farm Crops Subsection, bulletin from 1
Farm tractor, tractive efficiency of 266
Farm housing, contrasted with town and village in 10 Iowa counties 157

H
Hail damage, effect of injury in imitation of on the development of the corn plant 1
Hammer, B. W., co-author of 'Bacteriology of Cheese. II. Effect of Lactobacillus casei on the Nitrogenous Decomposition and Flavor Development in Cheddar Cheese Made from Pasteurized Milk' 387
'Reduction of Acetylpropionylcarnabinol and Diacetyl to 2, 3-Butylene Glycol by the Citric Acid-Fermenting Streptococci of Butter Cultures' 377
Henderson, W. J., author of "Yellow Dwarf a Virus Disease of Onions, and Its Control" 209
I

Ice cream, the preparation of a non-desiccated sodium caseinate sol and its use in. 177
Iverson, C. A., co-author of "The Preparation of a Non-Desiccated Sodium Caseinate Sol and Its Use in Ice Cream". 177

L

Lane, C. B., co-author of "Bacteriology of Cheese. II. Effect of Lactobacillus casei on the Nitrogenous Decomposition and Flavor Development in Cheddar Cheese Made from Pasteurized Milk". 337
L. casei, effect of adding to pasteurized milk for cheese making. 352
Leaf injury, effect of yield and quality of corn. 25
Varietal response to. 47

M

Maturity—time of, effect of injury upon. 50
McKibben, Eugene G., co-author of "Ttractive Efficiency of the Farm Tractor". 257
Mechanical power, methods of applying. 264
Sources of. 262
Michaelian, M. B., co-author of "Reduction of Acetyl-methyl-carbinol and Diacetyl to 2, 3-Butylene Glycol by the Citric Acid Fermenting Streptococci of Butter Cultures". 377
Milk, trials with on butter cultures. 399
Mining towns, housing in Boone County. 170
Mystic, housing status and facilities in. 160

O

Onions, prevalence and distribution of yellow dwarf in. 216
Overwintering, yellow dwarf virus. 236
Owned rural non-farm homes, differences among counties in median value of. 170

P

"Preparation of a Non-Desiccated Sodium Caseinate Sol and Its Use in Ice Cream, the," by E. W. Bird, H. W. Sadler and C. A. Iverson. 177
Experimental. 181
Method of preparation of sodium caseinate sols. 181
Equipment. 181
Precipitating, washing and peptizing. 183
Use of non-desiccated sodium caseinate sols in ice cream to replace definite amounts of serum solids. 185
Methods of standardization, processing and freezing. 185
Results. 186
Body and texture scores .. 193
Character of finished ice cream 191
Comparison of flavor and of body and texture scores 193
Consumer preference .. 196
Effect on whipping quality 186
Flavor scores .. 192
Melting quality .. 195
Literature cited .. 208
Literature review .. 179
Results, discussion of .. 197
Summary and conclusions .. 178
Power, sources of that used in agriculture 261

"Reduction of Acetylmethylcarbinol and Diacetyl to 2, 3-Butylene Glycol by the Citric Acid Fermenting Streptococci of Butter Cultures," by B. W. Hammel, G. L. Stahly, C. H. Werkman and M. B. Michaelian .. 377
Experimental ... 390
Trials with milk, unmodified and modified 394
Trials with tomato bouillon .. 390
Historical .. 383
Diacetyl and acetylmethylcarbinol in butter cultures 383
Reduction of diacetyl and acetylmethylcarbinol to 2, 3-butylene glycol .. 385
Introduction ... 383
Literature cited .. 406
Methods ... 387
Acetylmethylcarbinol plus diacetyl and diacetyl alone 387
2, 3-butylene glycol .. 387
Controls .. 389
Cultures used ... 390
Tomato bouillon .. 390
Volatile acid ... 389
Results, discussion of .. 404
Summary and conclusions .. 381
Reid, Margaret G., author of "Status of Town and Village Housing in Iowa" .. 49a
Rent paid, differences among skilled and unskilled according to . 149
Sadler, H. W., co-author of "The Preparation of a Non-Desiccated Sodium Caseinate Sol and Its Use in Ice Cream" 177
Shredding leaves, effect of on corn 39
Smut infection, relation of hail injury to corn 53
Sodium caseinate sol, preparation and use in ice cream 177
Stahly, G. L., co-author of "Reduction of Acetylmethylcarbinol and Diacetyl to 2, 3-Butylene Glycol by the Citric Acid Fermenting Streptococci of Butter Cultures" 377
"Status of Town and Village Housing in Iowa," by Margaret G. Reid .. 49a
Analysis of survey data .. 82
Communities surveyed .. 60a
Differences among counties in median rent of tenant homes ... 173
Differences among counties in median value of owned rural non-farm homes .. 170
Tenan homes, differences among counties in median value of ... 173
Tomato bouillion, trials with on butter cultures 390
Town and village housing, Iowa 73
Town and village communities, Iowa 61a
Towns, industrial versus non-industrial 114
"Tractive Efficiency of the Farm Tractor," by J. Brownlee Davidson,
Edgar Y. Collins and Eugene G. McKibben 257
Factors in the design of traction members 274
Diameter of the traction wheel 274
General condition of traction surfaces 276
Tractor drive wheel characteristics 274
Width of rim ... 275
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods of applying mechanical power</td>
<td>264</td>
</tr>
<tr>
<td>By automatic means</td>
<td>266</td>
</tr>
<tr>
<td>By belt</td>
<td>264</td>
</tr>
<tr>
<td>By drawbar</td>
<td>266</td>
</tr>
<tr>
<td>By power take-off</td>
<td>264</td>
</tr>
<tr>
<td>Other means of applying mechanical power</td>
<td>266</td>
</tr>
<tr>
<td>Results of tests</td>
<td>286</td>
</tr>
<tr>
<td>Effect of additional weight</td>
<td>294</td>
</tr>
<tr>
<td>Effect of angle lugs and extension rims</td>
<td>291</td>
</tr>
<tr>
<td>Effect of length of lug</td>
<td>287</td>
</tr>
<tr>
<td>Effect of traction surface</td>
<td>299</td>
</tr>
<tr>
<td>Influence of the diameter of tractor drive wheel</td>
<td>310</td>
</tr>
<tr>
<td>Rolling resistance</td>
<td>313</td>
</tr>
<tr>
<td>Tests of a track tractor</td>
<td>330</td>
</tr>
<tr>
<td>Tests of a rimless wheel</td>
<td>301</td>
</tr>
<tr>
<td>Tests of a tractor wheel equipped with pneumatic tires</td>
<td>304</td>
</tr>
<tr>
<td>Special apparatus</td>
<td>279</td>
</tr>
<tr>
<td>Dynamometer car</td>
<td>280</td>
</tr>
<tr>
<td>Reaction apparatus for a track tractor</td>
<td>284</td>
</tr>
<tr>
<td>Single wheel traction apparatus</td>
<td>280</td>
</tr>
<tr>
<td>Tractor drive input apparatus</td>
<td>283</td>
</tr>
<tr>
<td>Source of power used in agriculture</td>
<td>261</td>
</tr>
<tr>
<td>Sources of mechanical power</td>
<td>262</td>
</tr>
<tr>
<td>Summary</td>
<td>259</td>
</tr>
<tr>
<td>Concerning low pressure pneumatic tires</td>
<td>260</td>
</tr>
<tr>
<td>Concerning steel tractor wheels</td>
<td>259</td>
</tr>
<tr>
<td>Concerning tracks</td>
<td>260</td>
</tr>
<tr>
<td>Tractive efficiency</td>
<td>266</td>
</tr>
<tr>
<td>Factors influencing tractive efficiency</td>
<td>267</td>
</tr>
<tr>
<td>Types of devices for obtaining adhesion</td>
<td>276</td>
</tr>
<tr>
<td>Lugs</td>
<td>276</td>
</tr>
<tr>
<td>Open wheels</td>
<td>278</td>
</tr>
<tr>
<td>Pneumatic tires</td>
<td>278</td>
</tr>
<tr>
<td>Tracks</td>
<td>278</td>
</tr>
<tr>
<td>Types of tractors</td>
<td>271</td>
</tr>
<tr>
<td>Conventional four wheel</td>
<td>271</td>
</tr>
<tr>
<td>Four wheel drive</td>
<td>273</td>
</tr>
<tr>
<td>Front wheel drive</td>
<td>272</td>
</tr>
<tr>
<td>Two track</td>
<td>271</td>
</tr>
</tbody>
</table>

V

Virus, properties of yellow dwarf.. 230
Volatile acid, in butter cultures... 389

W

Werkman, C. H., co-author of "Reduction of Acetylmethylearbinol and
Diacetyl to 2, 3-Butylene Glycol by the Citric Acid Fermenting
Streptococci of Butter Cultures"... 377

Y

"Yellow Dwarf a Virus Disease of Onions, and Its Control," by W. J.
Henderson... 209
Literature cited.. 255
Name... 211
Overwintering of yellow dwarf virus.. 236

6
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulbs</td>
<td>238</td>
</tr>
<tr>
<td>Control measures</td>
<td>241</td>
</tr>
<tr>
<td>Artificial inoculation of Riverside Sweet Spanish onions</td>
<td>246</td>
</tr>
<tr>
<td>Effect of spraying</td>
<td>241</td>
</tr>
<tr>
<td>Indexing onion bulbs for infection</td>
<td>248</td>
</tr>
<tr>
<td>Production of onion bulbs for planting purposes in disease-free areas</td>
<td>251</td>
</tr>
<tr>
<td>Results obtained from control measures</td>
<td>252</td>
</tr>
<tr>
<td>Varietal response to infection</td>
<td>244</td>
</tr>
<tr>
<td>Inoculation of onion plants with other plant virus</td>
<td>240</td>
</tr>
<tr>
<td>Intertransmissibility of the virus</td>
<td>239</td>
</tr>
<tr>
<td>Seed</td>
<td>237</td>
</tr>
<tr>
<td>Soil</td>
<td>236</td>
</tr>
<tr>
<td>Volunteer onion plants</td>
<td>238</td>
</tr>
<tr>
<td>Prevalence and distribution of yellow dwarf of onions</td>
<td>216</td>
</tr>
<tr>
<td>Inoculation tests</td>
<td>218</td>
</tr>
<tr>
<td>Natural spread of yellow dwarf virus</td>
<td>219</td>
</tr>
<tr>
<td>Artificial inoculation tests</td>
<td>222</td>
</tr>
<tr>
<td>Effect of rate of growth on manifestation of yellow dwarf symptoms</td>
<td>226</td>
</tr>
<tr>
<td>Hypodermic needle inoculation</td>
<td>224</td>
</tr>
<tr>
<td>Inoculation with juice from apparently healthy onion plants</td>
<td>228</td>
</tr>
<tr>
<td>Inoculation with juice from fleshy and scale leaves of infected bulbs</td>
<td>225</td>
</tr>
<tr>
<td>Modified needle puncture method</td>
<td>223</td>
</tr>
<tr>
<td>Needle puncture inoculations of onion leaves</td>
<td>223</td>
</tr>
<tr>
<td>Possible natural dissemination of the virus</td>
<td>229</td>
</tr>
<tr>
<td>Properties of yellow dwarf virus</td>
<td>230</td>
</tr>
<tr>
<td>Aging in vitro</td>
<td>230</td>
</tr>
<tr>
<td>Effect of heat on the infectivity</td>
<td>232</td>
</tr>
<tr>
<td>Effect of low temperatures on the infectivity</td>
<td>237</td>
</tr>
<tr>
<td>Infectivity of virus from dried infected leaves</td>
<td>231</td>
</tr>
<tr>
<td>Yellow dwarf virus dilution tests</td>
<td>234</td>
</tr>
<tr>
<td>Summary</td>
<td>210</td>
</tr>
<tr>
<td>Symptoms</td>
<td>212</td>
</tr>
</tbody>
</table>