Lattice expansion in islands stabilized by electron confinement: Ag on Si(111)-7×7

Thumbnail Image
Date
2010-01-01
Authors
Ünal, Barış
Belianinov, Alex
Thiel, Patricia
Tringides, Michael
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemistry
Abstract

Ag on Si(111)-7×7 was one of the first systems where height selection of metal islands was attributed to electron confinement, i.e., stabilization of selected heights through a quantum size effect (QSE). However, it has been puzzling how the requisite electron standing waves can form, because the Fermi level EF (along the growth [111] direction) is within the gap for bulk Ag. With detailed experiments over a wide coverage and temperature range, we show that a large increase of 12% is present in the interlayer spacing within the bilayer islands. This can shift EF below the gap, allowing electron confinement to control height selection. This conclusion is also supported by the observation of a corrugation pattern of period 3 nm on top of the Ag islands, which is bias dependent and can only be the result of QSE-generated standing waves normal to the film.

Comments

This article is from Physical Review B 81, no. 8 (2010): 085411, doi:10.1103/PhysRevB.81.085411.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2010
Collections