2014

Structural and magnetic properties of Ti4+/Co2+ co-substituted cobalt ferrite

Cajetan Ikenna Nlebedim
Iowa State University, nlebedim@iastate.edu

Kevin W. Dennis
Iowa State University, dennis@ameslab.gov

R. William McCallum
Iowa State University, mccallum@ameslab.gov

David C. Jiles
Iowa State University, dcjiles@iastate.edu

Follow this and additional works at: http://lib.dr.iastate.edu/ece_pubs

Part of the [Electromagnetics and Photonics Commons](http://lib.dr.iastate.edu/ece_pubs)

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ece_pubs/21. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
Structural and magnetic properties of Ti4+/Co2+ co-substituted cobalt ferrite
I. C. Nlebedim, K. W. Dennis, R. W. McCallum, and D. C. Jiles

Citation: Journal of Applied Physics 115, 17A519 (2014); doi: 10.1063/1.4866230
View online: http://dx.doi.org/10.1063/1.4866230
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/115/17?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Effect of the Zn content in the magnetic properties of Co1xZnxFe2O4 mixed ferrites

Influence of manganese substitution on the microstructure and magnetostrictive properties of Co1xMnxFe2O4 (x =0.0–0.4) ferrite
J. Appl. Phys. 113, 153902 (2013); 10.1063/1.4802435

Effect of Ni2+ ion on the structural, magnetic and electrical properties of cobalt ferrites

Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles
J. Appl. Phys. 109, 053909 (2011); 10.1063/1.3559266

Does Ti4+ Ratio Improve the Physical Properties of CdxCo1x+TitFe22tO4?
Structural and magnetic properties of Ti\(^{4+}/\)Co\(^{2+}\) co-substituted cobalt ferrite

I. C. Nlebedim,\(^1,2,a)\) K. W. Dennis,\(^1\) R. W. McCallum,\(^1\) and D. C. Jiles\(^1,2\)

\(^1\)Ames Laboratory of U.S. Department of Energy, Ames, Iowa 50011, USA
\(^2\)Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA

(Received 23 September 2013; accepted 14 November 2013; published online 24 February 2014)

The variations in the structural magnetic properties of cobalt ferrite due to Ti\(^{4+}/\)Co\(^{2+}\) co-substitution for 2Fe\(^{3+}\) are presented. The non-linear relation in the variation of the lattice parameter agrees with a previous study on cation distribution, which showed that the rate of substitution of cations into the A-sites and B-sites varies with Ti-concentration. Such variation in the rate of substitution into the cation sites was also observed in the magnetization, coercive field, and susceptibility data. The coercive field and differential susceptibility are inversely related. Although the coercive field of the Ti-substituted cobalt ferrite generally decreased compared to the un-substituted cobalt ferrite, magnetic susceptibility was higher at higher Ti-concentrations.

C. Calcinations and sintering were done in air for 24 h. Backscattered electron images were obtained using a scanning electron microscope (SEM) equipped with an x-ray analyzer for energy dispersive x-ray spectroscopy (EDX) to study the microstructure and compositions. X-ray diffractometry was used to study the crystal structure of the samples. Magnetic properties were measured using a vibrating sample magnetometer (VSM) with applied magnetic field up to \(\sim 2390\) kA/m (\(\mu_0H = 3\) T). Maximum differential susceptibility (\(\chi' = \frac{dM}{dT}\)) was obtained by differentiating the initial magnetization data measured at magnetic field increment of \(\sim 4\) kA/m.

III. RESULTS AND DISCUSSION

The x-ray diffraction patterns of the samples (Fig. 1) show that they are single spinel phase with no observable second phase. In a previous study, a secondary TiFe\(_2\)O\(_5\) phase was formed at all concentrations of Ti (x = 0–0.3).\(^3\) It may at first seem that the inability to make single phase samples in that study could be related to the fact that tetravalent Ti\(^{4+}\) was substituted for trivalent Fe\(^{3+}\). However, the observation in that study that the sample x = 0 also showed the TiFe\(_2\)O\(_5\) phase may suggest that the impurity phase was part of the starting oxide materials.

II. EXPERIMENTAL DETAILS

Fe\(_3\)O\(_4\), Co\(_3\)O\(_4\), and TiO\(_2\) were mixed in appropriate ratios, calcined twice at 1000 °C to ensure complete solid state reaction and sintered at 1350 °C. Calcinations and sintering were done in air for 24 h. Backscattered electron images were obtained using a scanning electron microscope (SEM) equipped with an x-ray analyzer for energy dispersive x-ray spectroscopy (EDX) to study the microstructure and compositions. X-ray diffractometry was used to study the crystal structure of the samples. Magnetic properties were measured using a vibrating sample magnetometer (VSM) with applied magnetic field up to \(\sim 2390\) kA/m (\(\mu_0H = 3\) T). Maximum differential susceptibility (\(\chi' = \frac{dM}{dT}\)) was obtained by differentiating the initial magnetization data measured at magnetic field increment of \(\sim 4\) kA/m.

\(^a\)Author to whom correspondence should be addressed. Electronic mail: nlebedim@iastate.edu.
In the present study, high purity oxides were used. In addition, to take care of the valance differences, Co$^{2+}$ and Ti$^{4+}$ were co-substituted for 2 Fe$^{3+}$. The compositions obtained by EDX are very close to the targeted compositions as shown in Table I. The variation in the lattice parameter also shown in Table I deviates from Vegard’s law, which may indicate that Ti$^{4+}$ substitutes at varying rates into the cation sites as its concentration increases. As could be seen in the backscattered electron micrographs in Fig. 2, all the samples had uniform contrast which is indicative of single phase materials.

Fig. 3 shows that Ti$^{4+}$/Co$^{2+}$ co-substitution for 2 Fe$^{3+}$ resulted in a decrease in magnetization. The inset shows that the saturation magnetization decreased as well. The observed decrease in saturation magnetization is likely due to the site preference of the substituted cations with respect to Fe$^{3+}$. In ferrites containing either Ti$^{4+}$ or Co$^{2+}$, both cations are known to have stronger preferences for the octahedral sites than Fe$^{3+}$ which is distributed equally between the tetrahedral (A-sites) and octahedral sites (B-sites). The strong negative superexchange interaction between both cation sites results in the sites being antiferromagnetically coupled such that the net magnetic moment (m) is given by $m = \sum m_{B\text{-sites}} - \sum m_{A\text{-sites}}$. While Ti$^{4+}$ is non-magnetic, the magnetic moment of Co$^{2+}$ ($3 \mu_B$) is less than that of Fe$^{3+}$ ($5 \mu_B$). Therefore, co-substitution of Ti$^{4+}$ and Co$^{2+}$ into the B-sites decreased the contribution of the B-sites cations to the net magnetic moment thus resulting in the observed decrease in magnetization and saturation magnetization. A similar result was obtained in a study in which only Ti$^{4+}$ was substituted for Fe$^{3+}$. In another study, it was shown that for Ti$_x$Fe$_{2-x}$O$_4$, at Ti-concentration (x) in the range 0 $\leq x \leq 0.2$, Fe$^{3+}$, Fe$^{2+}$, and Ti$^{4+}$ co-occupy the B-sites but the concentration of Fe$^{3+}$ decreased faster in the range 0 $\leq x \leq 0.8$ such that beyond $x = 0.8$, only Fe$^{2+}$ and Ti$^{4+}$ were on the B-sites. Ti$_x$Fe$_{2-x}$O$_4$ can be described as Ti-substituted FeOFe$_2$O$_3$, while the system reported in this work can be considered as Ti-substituted CoOFe$_2$O$_3$. Since Co$^{2+}$ and Fe$^{2+}$ have similar cation site preference, comparable ionic radii, and magnetic moment, one would expect the cation distribution in the system studied here to be similar to that of Ti-substituted FeOFe$_2$O$_3$ studied in the previous work. This would then suggest that the rate of change of magnetization with Ti-concentration (x) would be more drastic in the range 0.2 $\leq x \leq 0.8$ compared to the range 0 $\leq x \leq 0.2$. This is in agreement with the observation in Fig. 3. It appears that this behavior, in which properties vary depending on the regions

| Table I. Targeted compositions and composition obtained from EDX analyses of the samples. |
|-------------------------------|----------------|----------------|----------------|
| EDX composition | Lattice parameter (Å) |
| Target composition ($x = Ti$) | Fe | Co | Ti | |
| 0 | 1.99 | 1.01 | 0 | 8.40 |
| 0.05 | 1.89 | 1.05 | 0.06 | 8.37 |
| 0.10 | 1.8 | 1.09 | 0.11 | 8.38 |
| 0.2 | 1.60 | 1.20 | 0.20 | 8.39 |
| 0.4 | 1.22 | 1.38 | 0.4 | 8.38 |
| 0.5 | 1.01 | 1.50 | 0.49 | 8.40 |

FIG. 3. Magnetization plots of the Ti-substituted cobalt ferrite samples. Saturation magnetization decreased almost linearly and at a faster rate in the high Ti-concentration region.

FIG. 2. Backscattered electron micrographs showing uniform contrast which is indicative of single phase samples.
of Ti-concentration, is particle size dependent. In a study in which the samples were nanoparticles of Co1+xFexTi2−xO4, a different trend was reported.6

The variation of coercive field (black circles) and differential susceptibility (red squares) are shown in Fig. 4. Compared to the un-substituted sample, coercive field decreased, which is a consequence of weakened A-B super-exchange interaction with Ti-substitution. Such weakening results in lower magnetocrystalline anisotropy, and hence lower coercivity.

The effect of co-substitution of Ti4+/Co2+ on magnetocrystalline anisotropy will be investigated in a future study. It is interesting to observe that the trend in the variation of coercivity, like the variation in magnetization, can also be divided into two regions. Coercivity is higher in the region 0 < x ≤ 0.2 than 0.2 < x ≤ 0.5. Nevertheless, within each region, while magnetization decreased, coercivity increased. There is also a correlation between the coercivity and the differential susceptibility (\(\chi' = \frac{dM}{dH} \)); both are inversely related (Fig. 4). This agrees with the expectation that materials with high susceptibility have lower coercivity, while materials with low susceptibility have higher coercivity. Such has been previously observed in Zn-substituted cobalt ferrite.7

IV. CONCLUSIONS

The effect of Ti4+/Co2+ co-substitution for 2 Fe3+ in cobalt ferrite has been investigated. The lattice parameters did not follow Vegard’s law indicative of variations in the rate at which the cations are substituted into the tetrahedral and octahedral sites. The saturation magnetization, coercivity, and magnetic susceptibility all varied in a pattern that agrees with cation distribution in a similar material previously reported. The coercivity varied inversely with the maximum differential susceptibility of the samples.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358.