10-2007

16-Aza-ent-beyerane and 16-Aza-ent-trachylobane: Potent Mechanism-Based Inhibitors of Recombinant ent-Kaurene Synthase from Arabidopsis thaliana

Amab Roy
University of Illinois at Urbana-Champaign

Frank G. Roberts
University of Illinois at Urbana-Champaign

P. Ross Wilderman
Iowa State University

Ke Zhou
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/bbmb_ag_pubs

Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Natural Products Chemistry and Pharmacognosy Commons

The complete bibliographic information for this item can be found at http://lib.dr.iastate.edu/bbmb_ag_pubs/11. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html.
16-Aza-ent-beyerane and 16-Aza-ent-trachylobane: Potent Mechanism-Based Inhibitors of Recombinant ent-Kaurene Synthase from Arabidopsis thaliana

Abstract
The secondary ent-beyeran-16-yl carbocation (7) is a key branch point intermediate in mechanistic schemes to rationalize the cyclic structures of many tetra- and pentacyclic diterpenes, including ent-beyerene, ent-kaurene, ent-trachylobane, and ent-atiserene, presumed precursors to >1000 known diterpenes. To evaluate these mechanistic hypotheses, we synthesized the heterocyclic analogues 16-aza-ent-beyerane (12) and 16-aza-ent-trachylobane (13) by means of Hg(II)- and Pb(IV)-induced cyclizations onto the Δ12 double bonds of tricyclic intermediates bearing carbamoylmethyl and aminomethyl groups at C-8. The 13,16-seco-16-norcarbamate (20a) was obtained from ent-beyeran-16-one oxime (17) by Beckmann fragmentation, hydrolysis, and Curtius rearrangement. The aza analogues inhibited recombinant ent-kaurene synthase from Arabidopsis thaliana (GST-rAtKS) with inhibition constants (IC50) 1 × 10⁻⁷ and 1 × 10⁻⁶ M) similar in magnitude to the pseudo-binding constant of the bicyclic ent-copalyl diphosphate substrate (Km) 3 × 10⁻⁷ M). Large enhancements of binding affinities (IC50) 4 × 10⁻⁹ and 2 × 10⁻⁸ M) were observed in the presence of 1 mM pyrophosphate, which is consistent with a tightly bound ent-beyeranyl⁺/pyrophosphate-ion pair intermediate in the cyclization-rearrangement catalyzed by this diterpene synthase. The weak inhibition (IC50) 1 × 10⁻⁵ M) exhibited by ent-beyeran-16-exo-yl diphosphate (11) and its failure to undergo bridge rearrangement to kaurene appear to rule out the covalent diphosphate as a free intermediate. 16-Aza-ent-beyerane is proposed as an effective mimic for the ent-beyeran-16-yl carbocation with potential applications as an active site probe for the various ent-diterpene cyclases and as a novel, selective inhibitor of gibberellin biosynthesis in plants.

Keywords
alkyl transferases, aryl transferases, Arabidopsis, Aza compounds, Crystallography, Enzyme inhibitors

Disciplines
Biochemistry, Biophysics, and Structural Biology | Natural Products Chemistry and Pharmacognosy

Comments

Rights
One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

Authors
Antibiofouling Polymer-Coated Gold Nanoparticles as a Contrast Agent for in Vivo X-ray Computed Tomography Imaging [J. Am. Chem. Soc. 2007, 129, 7661–7665]. Dongkyu Kim, Sangjin Park, Jae Hyuk Lee, Yong Yeon Jeong,* and Sangyong Jon*

We found that there were two errors in Figure 2. One is in the format of Figure 2 itself, and the other is in the CT value of Ultravist. The format of Figure 2 was not appropriate to compare the efficacy as a CT contrast agent between the PEG-coated gold nanoparticles (GNPs) and Ultravist. In the corrected Figure 2 below, the CT value is denoted as a function of concentration (M in log scale, not mg/mL) of GNPs. On the other hand, the corrected CT value of Ultravist in the corrected Figure 2 revealed that GNPs had about 1.9 times higher X-ray absorption than Ultravist, not 5.7 times as described in the published paper. Despite the above-mentioned errors, however, the concept and the usefulness of GNPs as a CT contrast agent are still valid because those errors might have little influence on the conclusion of the paper. The detailed corrections are described below.

Corrected Figure 2 and the figure caption

The paragraph of page 7663, column 2, lines 17–24 should be rewritten as follows:

Figure 2 shows that 1.27 M of PEG-coated GNPs gave an equivalent X-ray absorption as 2.36 M of Ultravist (corresponding to 300 mg iodine/mL). In other words, at the same concentration, the attenuation coefficient of the PEG-coated GNPs is 1.9 times higher than that of the current iodine-based CT contrast agent.

Page 8035. The wrong DNA sequences were reported in Figure 1. The correct sequences are shown below.

ODN1(X): 5′-CTC TGT GCG CCX GTC TCT-3′
ODN 6: 5′-CTC TGT GCG CC-3′
ODN 7: 5′-CTC TGT GCG CCNQ2-3′

Page 8038. The wrong name of DNA was reported in Table 1. ODN 2(mC) should be corrected to ODN 2(m C).

We thank Prof. Yoshihiro Kudo for bringing this error to our attention.

JA076508K

10.1021/ja076508k
Published on Web 09/25/2007