A Tri-level Model of Centralized Transmission and Decentralized Generation Expansion Planning for an Electricity Market: Part II

Thumbnail Image
Date
2014-01-01
Authors
Jin, Shan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ryan, Sarah
Department Chair
Research Projects
Organizational Units
Organizational Unit
Industrial and Manufacturing Systems Engineering
The Department of Industrial and Manufacturing Systems Engineering teaches the design, analysis, and improvement of the systems and processes in manufacturing, consulting, and service industries by application of the principles of engineering. The Department of General Engineering was formed in 1929. In 1956 its name changed to Department of Industrial Engineering. In 1989 its name changed to the Department of Industrial and Manufacturing Systems Engineering.
Journal Issue
Is Version Of
Versions
Series
Department
Industrial and Manufacturing Systems Engineering
Abstract

We study a tri-level integrated transmission and generation expansion planning problem in a deregulated power market environment. The collection of bi-level sub-problems in the lower two levels is an equilibrium problem with equilibrium constraints (EPEC) that can be approached by either the diagonalization method (DM) or a complementarity problem (CP) reformulation. This paper is a continuation of its Part I, in which a hybrid iterative algorithm is proposed to solve the tri-level problem by iteratively applying the CP reformulation of the tri-level problem to propose solutions and evaluating them in the EPEC sub-problem by DM. It focuses on the numerical results obtained by the hybrid algorithm for a 6-bus system, a modified IEEE 30-bus system, and an IEEE 118-bus system. In the numerical instances, the (approximate) Nash equilibrium point for the sub-problem can be verified by examining local concavity.

Comments

This is a manuscript of an article from IEEE Transactions on Power Systems 29 (2014): 142, doi: 10.1109/TPWRS.2013.2280082. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2014
Collections