Mapping Residual Stress Fields by Ultrasonic Tomography

B. P. Hildebrand
Pacific Northwest National Laboratory

D. E. Hufferd
Pacific Northwest National Laboratory

Follow this and additional works at: http://lib.dr.iastate.edu/cnde_yellowjackets_1977

Part of the Materials Science and Engineering Commons

Recommended Citation
http://lib.dr.iastate.edu/cnde_yellowjackets_1977/22

This S. New Techniques and Phenomena is brought to you for free and open access by the Interdisciplinary Program for Quantitative Flaw Definition Annual Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Proceedings of the ARPA/AFML Review of Progress in Quantitative NDE, September 1976–June 1977 by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.
MAPPING RESIDUAL STRESS FIELDS
BY ULTRASONIC TOMOGRAPHY

B. P. Hildebrand and D. E. Hufferd
Battelle Northwest
Richland, Washington 99352

ABSTRACT

It is well known that the velocity of sound in a solid is affected by stress. This phenomenon is a third order effect, and has been used primarily as a research tool to determine the Lamé and Murnaghan elastic constants for various materials. A few preliminary attempts to use it for stress analysis have also been made. In this paper we describe the first attempt to combine this effect with the newly revived mathematical technique known as Computerized Axial Tomography (CAT) to provide quantitative maps of velocity within thick metal sections. From these maps it is possible to infer the state of residual stress within the material. The technique requires that time-of-flight profiles through a section of the solid be made in a number of angular directions. This is equivalent to measuring the velocity through the solid from many different directions in a single plane. The computer takes the set of data so gathered and inverts it to produce a cross-sectional plot of velocity versus position. We have succeeded in mapping velocity anomalies as low as 0.2% and estimate that 0.5% is technically feasible. This kind of sensitivity should allow us to map stress anomalies as low as 1000 psi/inch. We will also describe an experiment with a mild steel section in which we inserted an oversized pin by shrink fitting. The reconstruction clearly shows the high compressive stress within the pin, and the tensile stress in the metal surrounding the pin.

Acknowledgement

This work was sponsored by the Electric Power Research Institute, Palo Alto, California.

References

\[V_l = \frac{n^2}{2 \pi} \left[\frac{1}{2} \ln \left(\frac{\pi}{2} \right) - \frac{1}{2} \right] \]

\[V_t = \frac{n^2}{2 \pi} \left[\frac{1}{2} \ln \left(\frac{\pi}{2} \right) - \frac{1}{2} \right] \]

\(\rho \) = DENSITY

\(V_l \) = VELOCITY OF LONGITUDINAL WAVES PROPAGATING IN DIRECTION OF STRESS

\(V_t \) = VELOCITY OF LONGITUDINAL WAVES PROPAGATING IN DIRECTION TRANSVERSE TO STRESS

\(\lambda, \mu \) = SECOND ORDER LAMÉ ELASTIC CONSTANTS

\(\xi, \eta \) = THIRD ORDER MUMMAGHEN ELASTIC CONSTANTS

\(T \) = UNIAXIAL TENSION

\(K_0 = 1/3 (3 \lambda - 2 \mu) \) = MILK MODULUS

For compression, the sign of \(T \) is reversed.

Figure 1. Theoretical variation of longitudinal velocity as a function of stress.

Figure 2. Experimental variation of longitudinal velocity with stress. The annealing was done by heating the sample to 1000°C and cooling at room temperature. Data was taken in tension only. The extrapolation to compression is valid in the linear region, but doubtful beyond the proportional limit.

Figure 3. Principle of x-ray tomography. The source and receiver are on opposite sides of a moving frame. Each traverse produces a single projection at a single angle until 180 projections are collected.
Figure 4. Principle of ultrasonic tomography for thick steel sections. Maximum practical field of view is 90°. This arrangement could be used if both sides of the section are accessible. The reconstruction will yield a cross-sectional plot of the ultrasonic velocity variations.

Figure 5. This arrangement could be used if only one side is accessible and the opposite side is smooth. Other angles would be obtained by changing the spacing between source and receiver. The reconstruction would then yield the object and its mirror image.

Figure 6. Reconstruction of x-ray and ultrasonic tomogram.

Reconstruction of X-ray Tomogram

\[A_i = \sum_{j=1}^{K} a_{ij} = \sum_{j=1}^{K} a_{ij} \]

Where:
- \(A_i \) = Attenuation along ith ray (measured)
- \(a_{ij} \) = Attenuation coefficient in jth cell (unknown)
- \(a_{ij} \) = Attenuation coefficient surrounding medium (known)
- \(L_j \) = Pathlength of jth ray
- \(N \) = Total number of rays
- \(M \) = Number of angles

\[\sum_{i=1}^{N} \sum_{j=1}^{M} A_i = \sum_{i=1}^{N} \sum_{j=1}^{M} \left(\sum_{k=1}^{K} a_{ijk} \right) \]

Reconstruction of Ultrasonic Tomogram

\[T_j = \sum_{i=1}^{N} \sum_{k=1}^{M} \left(\sum_{h=1}^{K} \frac{1}{V_{ih}} \right) \]

Where:
- \(T_j \) = Time of flight along jth ray (measured)
- \(V_{ih} \) = Velocity in ith cell (unknown)
- \(V_{om} \) = Velocity in surrounding medium (known)

Hence, we have P - NM equations where P = Total number of rays and M = Number of angles, and \(K \) unknowns \(a_{ijk} \). If \(K = NM \) we can solve for the unknown attenuation or velocity coefficients.
Figure 7. Experimental arrangement for obtaining time-of-flight profiles by through transmission. After each linear scan the model was rotated by 50°. A total of 19 scans were made for a total field of view of 90°. Time-of-flight measurements were made at 21 positions along the scan. Thus a total of 399 measurements were taken, and used to reconstruct 81 points yielding a system of equations having four-fold redundancy.

Figure 8. Plots of the time-of-flight profiles taken through the two-fingered glove model. Zero time-of-flight corresponds to the water path and negative times correspond to shorter flight times. Minimum time occurs when the two fingers lie one behind the other resulting in maximum path through the faster liquid.

Figure 9. Reconstruction of velocity variation through the two-fingered glove model filled with a liquid whose velocity is 2% higher than that of the surrounding water. The reconstruction was done on a 9 x 9 grid and interpolated to a 40 x 40 grid.

Figure 10. Reconstruction of velocity variation through the two-fingered glove model filled with a liquid whose velocity is 0.2% higher than that of the surrounding liquid.
Figure 11. Experimental arrangement for obtaining time-of-flight profiles by reflection. After each linear scan the radial arms of the transducer holders were rotated 2.6° towards each other for a combined change of 50°. A total of 19 scans were made for a total field of view of 90°.

Figure 12. Reconstruction of velocity variation through the one-fingered glove model filled with a liquid whose velocity is 2% higher than that of the surrounding water. This reconstruction was done for the case where the data is taken by reflection, resulting in a mirror image.

Figure 13. This is a steel model consisting of an oversized pin inserted into a hole. Both were fabricated from the same block of 1018 mild steel. The hole was 0.250 inches in diameter and the pin was 0.252 inches in diameter. The block was heated to 1000°C, the pin cooled in liquid nitrogen and then forced into the hole. The resulting compressive stress on the pin is estimated to be 108,000 psi.

Figure 14. 0° profile through the steel model. Note the increased time-of-flight through the region containing the pin, and the decrease in the regions surrounding the pin.

Figure 15. Reconstruction of velocity variations in the steel model. Downward extension represents decreased velocity and, hence, compression. Note that in the surrounding block there is considerable tension stress. From the experimental calibration data we estimate average compressive stress in the pin to be 110,000 psi, maximum tension stress in the block to be 64,000 psi and maximum compression stress in the block to be 90,000 psi.
Figure 16. Numerical values for velocity changes in percent related to the geometry of the steel model. Shaded regions indicate velocity increase (tension) and white regions indicate velocity decrease (compression).